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Abstract—A cyclically symmetric entropy inequality is of the
form ~O ≥ c̄~O′ , where ~O and ~O′ are two cyclic orbit entropy
terms. A computational approach is formulated for bounding
the extremal value of c̄, which is denoted by c̄O,O′ . For two
non-empty orbits O and O′ of a cyclic group, it is said that
O dominates O′ if c̄O,O′ = 1. Special attention is paid to
characterizing such dominance relationship, and a graphical
method is developed for that purpose.

I. INTRODUCTION

Let X0, X1, · · · , Xn−1 be n jointly distributed discrete ran-
dom variables. The celebrated Han’s subset entropy inequality
[1] states that
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H(XA′) (1)

for any i, j ∈ Nn with i ≤ j, where Zn = {0, 1, · · · , n − 1}
and Nn = {1, 2, · · · , n}. Note that Han’s inequality treats
different subsets of the same cardinality on an equal footing;
as a consequence, it finds natural applications in the converse
argument for problems with this symmetric structure (such as
symmetric multilevel diversity coding [2]–[5] and symmetric
multiple description coding [6]–[8]). For any A ⊆ Zn and any
k ∈ Zn, define

(A+ k)n = {(a+ k)n : a ∈ A},

where (·)n denotes the modulo-n operation. It was shown in
[4] that (1) is implied by the following sliding-window subset
entropy inequality:
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n−1∑
k=0

H(X(Zi+k)n) ≥
1

j

n−1∑
k=0

H(X(Zj+k)n) (2)

for any i, j ∈ Nn with i ≤ j. Note that, among the subsets
of the same cardinality, only those consisting of cyclically
consecutive integers are relevant in (2). As such, the sliding-
window subset entropy inequality can be used in lieu of
Han’s subset entropy inequality to handle problems with more
relaxed symmetric structures.

Following [9], we shall interpret (1) and (2) as certain
orbit entropy inequalities. Let G be a permutation group
over Zn. For any A ⊆ Zn, the collection of distinct sets
g(A) , {g(a) : a ∈ A}, g ∈ G, is referred to as an orbit of G
and is denoted by O(A). For an orbit O, all its elements have
the same cardinality, which is denoted by ℓO; the cardinality

of O itself is denoted by |O|. For each non-empty1 orbit O of
G, we define the corresponding (normalized) orbit entropy as

~O =
1

ℓO|O|
∑
A∈O

H(XA).

An orbit entropy inequality is of the form

~O ≥ c̄~O′ ,

where O and O′ are two non-empty orbits of G. Of particular
importance is the extremal value of c̄, which is defined as

c̄O,O′ = max{c̄ : ~O ≥ c̄~O′ for all (X1, · · · , Xn)}.

We shall refer to c̄O,O′ as the extremal coefficient and the
associated inequality ~O ≥ c̄O,O′~O′ as the extremal orbit
entropy inequality.

The largest permutation group over Zn is the symmetric
group Sn. Note that two subsets A and A′ are in the same
orbit of Sn if and only if |A| = |A′|. It can be shown [9] that,
for G = Sn,

c̄O,O′ =

{
1, ℓO ≤ ℓO′ ,
ℓO′
ℓO

, otherwise.
(3)

and the case ℓO ≤ ℓO′ corresponds to Han’s subset entropy
inequality. On the other hand, the smallest permutation group
is the one that consists of only the identity mapping. In this
case, every subset of Zn gives rise to a distinct orbit, and we
have [9]

c̄O,O′ =

{
|A′|
|A| , A ⊇ A

′,

0, otherwise,

for O = {A} and O′ = {A′}, where A and A′ are two
arbitrary non-empty subsets of Zn.

In this work we focus on the case G = Cn (the cyclic group
over Zn), and the corresponding orbit entropy inequalities will
be referred to as cyclically symmetrical entropy inequalities.
This choice enables us to strike a balance between the afore-
mentioned two extreme cases. Indeed, the symmetry of Cn is
weak enough (as compared to Sn) to induce a rich class of
orbit entropy inequalities and is strong enough (as compared
to the identity permutation which has no symmetry at all)
to make such inequalities interesting. It will be seen that the
sliding-window subset entropy inequality is just a member of
a big family of cyclically symmetrical entropy inequalities.

1An orbit O is said to be non-empty if O ̸= {∅}.



Although some progress was made in [9], it appears
difficult, if not impossible, to obtain a complete analytical
characterization of c̄O,O′ for cyclically symmetrical entropy
inequalities. For this reason, a computational approach is
developed in the present work. Specifically, we compute a
lower bound on c̄O,O′ using Shannon-type inequalities [10]
(formulated as a linear program) and an upper bound on c̄O,O′

by searching over a class of constructions based on maximum
distance separable (MDS) codes.

A common feature shared by (1) and (2) is that they
continue to hold if we replace the entropy function H(·) with
an arbitrary submodular function f(·) satisfying f(∅) = 0.
The fact that the monotonicity of the entropy function is not
needed for establishing (1) and (2) deserves special atten-
tion. Intuitively, random variables are only re-distributed in
a submodular entropy inequality whereas a monotone entropy
inequality involves insertion or deletion of random variables,
which often leads to a loose bound. In this sense, submodular
entropy inequalities like (1) and (2) are particularly desirable
in the converse argument. As a consequence, significant effort
has been devoted to proving this type of inequalities (see, e.g.,
[11]). Motivated by this, we place special emphasis on those
extremal cyclically symmetrical entropy inequalities for which
c̄O,O′ = 1 (note that c̄O,O′ = 1 if and only if ~O ≥ c̄O,O′~O′

is a balanced inequality [12]); indeed, a moment’s thought will
reveal that the proof of such inequalities (assuming they are
Shannon-type inequalities) cannot hinge on the monotonicity
of the entropy function. Furthermore, we introduce the notion
of dominance. Specifically, orbitO is said to dominate orbitO′

if c̄O,O′ = 1. It will be seen that the symmetry of Cn enables
us to develop a specialized graphical method for (partially)
characterizing this dominance relationship,

The rest of this paper is organized as follows. In Section
II, we formulate a computational approach for bounding the
extremal coefficient, which yields a complete characterization
of c̄O,O′ for n ≤ 6. Section III is devoted to the investigation
of the dominance relationship, and a graphical method is
developed for that purpose. Section IV concludes the paper.

II. BOUNDING THE EXTREMAL COEFFICIENT: A
COMPUTATIONAL APPROACH

In this section we present a computational approach that
can be used to obtain upper and lower bounds on c̄O,O′ .

A. A Linear Programming Lower Bound

For each ℓ ∈ {0, 1, n−1, n}, let Oℓ denote the unique orbit
O of Cn with ℓO = ℓ. Consider the following optimization
problem, which is induced by the Shannon-type inequalities
and the symmetry of Cn:

min
ℓO′

ℓO
HO

s.t. HOn −HOn−1 ≥ 0,

HO({i}∪Q) +HO({j}∪Q) −HO(Q) −HO({i}∪{j}∪Q)

≥ 0, i ̸= j, i, j ∈ Zn,Q ⊆ Zn \ {i, j},
HO′ = 1.

TABLE I
c̄O,O′ FOR n = 4.

PPPPPPO
O′
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TABLE II
c̄O,O′ FOR n = 5.

PPPPPPO
O′

O1 O2,1 O2,2 O3,1 O3,2 O4 O5

O1 1 1 1 1 1 1 1
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Denote this linear program by P and its optimal value by (P ).
We have the following result.

Proposition 1: (P ) ≤ c̄O,O′ .

B. An Upper Bound via MDS Codes

For each n, let us fix a finite field Fq of size q ≥ n. We shall
first construct k + r random variables Z0, Z1, . . . , Zk+r−1 as
follows. Let the first k random variables Z0, Z1, ..., Zk−1 be
independent, identically and uniformly distributed on Fq , and
let the r additional random variables Zk, Zk+1, ..., Zk+r−1 be
generated by encoding the first k random variables with an
arbitrary (k+r, k) MDS code, such as a Reed-Solomon code.
Next for each i ∈ Zk+r, we assign Zi to mi elements in the
set (X0, X1, . . . , Xn−1). Without loss of generality, we can
assume 1 ≤ m0 ≤ m1 ≤ . . . ≤ mk+r−1 and

∑k+r−1
i=0 mi ≤

n. For any subset XA, denote the number of unique random
variables Zi in this set by m, then

H(XA) =

{
m log q, m ≤ k,
k log q, otherwise.

Optimizing the ratio ~O
~O′

among the choices of param-
eters (k, r,m0,m1, . . . ,mk+r−1) and the assignments to
(X0, X1, . . . , Xn−1), we can obtain an upper bound on c̄O,O′ .

C. Results

Using the approach introduced above, we are able to char-
acterize c̄O,O′ for n ≤ 6.

1) n ≤ 3: The orbits of Cn coincide with those of Sn; as
a consequence, c̄O,O′ is given by (3).

2) n = 4: There are five non-empty orbits O1, O2,1,
O2,2, O3, and O4, which are generated by {0}, {0, 1},
{0, 2}, {0, 1, 2}, and {0, 1, 2, 3}, respectively. The list of
extremal coefficients for all non-empty orbit pairs can be
found in Table I.



TABLE III
c̄O,O′ FOR n = 6.

PPPPPPO
O′

O1 O2,1 O2,2 O2,3 O3,1 O3,2 O3,3 O3,4 O4,1 O4,2 O4,3 O5 O6
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3) n = 5: There are seven non-empty orbits O1, O2,1,
O2,2, O3,1, O3,2, O4, and O5, which are generated
by {0}, {0, 1}, {0, 2}, {0, 1, 2}, {0, 1, 3}, {0, 1, 2, 3},
and {0, 1, 2, 3, 4}, respectively. The list of extremal
coefficients for all non-empty orbit pairs can be found
in Table II.

4) n = 6: There are thirteen non-empty orbits O1, O2,1,
O2,2, O2,3, O3,1, O3,2, O3,3, O3,4, O4,1, O4,2, O4,3,
O5, and O6, which are generated by {0}, {0, 1},
{0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 4},
{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 1, 2, 3, 4}, and
{0, 1, 2, 3, 4, 5}, respectively. The list of extremal co-
efficients for all non-empty orbit pairs can be found in
Table III.

III. CHARACTERIZING THE DOMINANCE RELATIONSHIP:
A GRAPHICAL METHOD

Recall that orbit O is said to dominate orbit O′ (denoted by
O ≽ O′) if c̄O,O′ = 1. The relation “≽” is a partial order over
the set of non-empty orbits, namely, it satisfies the following
properties:

1) O ≽ O (reflexivity);
2) if O ≽ O′ and O′ ≽ O, then O = O′ (antisymmetry);
3) if O ≽ O′ and O′ ≽ O′′, then O ≽ O′′ (transitivity).

One can easily infer the dominance relationship from the
extremal coefficients for n ≤ 6 (see Fig. 1).

A. Necessary Conditions for O ≽ O′

Proposition 2: If O ≽ O′, then ℓO ≤ ℓO′ . Moreover, if
O ≽ O′ and O ≠ O′, then ℓO < ℓO′ .

In fact, we have the following conjecture.
Conjecture: If O ≽ O′, then there must exist A ∈ O and
A′ ∈ O′ such that A ⊆ A′.

The conjecture is trivially true when ℓO = 1. We shall show
that it is also true when ℓO = 2. In fact, we have the following
stronger result.

O2,1 O2,2

O3,1 O3,2

n = 4

n = 5 n = 6

n = 1 n = 2 n = 3

O1

O3

O4

O1

O2

O3

O1

O2

O1

O1

O4

O5

O2,1 O2,2

O1

O5

O6

O2,1 O2,2 O2,3

O3,1 O3,2 O3,3 O3,4

O4,1 O4,2 O4,3

Fig. 1. Hasse diagrams of the dominance relationship for n ≤ 6.

Proposition 3: Assume {0,m} ∈ O for some m ∈ N⌊n
2 ⌋.

Then O ≽ O′ if and only if∑
A∈O I(A ∩ {0,m} ̸= ∅)∑

A′∈O′ I(A′ ∩ {0,m} ̸= ∅)
≥ 2|O|

ℓO′ |O′|
, (4)

where I(·) is the indicator function.
The proof of Proposition 3 is omitted. Here we explain why

(4) implies {0,m} ⊆ A′ for some A′ ∈ O′. Clearly,

1

|O|
∑
A∈O

I(A ∩ {0,m} ̸= ∅)

=
1

n

n−1∑
k=0

I({k, (m+ k)n} ∩ {0,m} ≠ ∅)

≤ 3

n
. (5)



On the other hand,
1

|O′|
∑

A′∈O′

I(A′ ∩ {0,m} ≠ ∅)

=
1

n

n−1∑
k=0

I((Λ(O′) + k)n ∩ {0,m} ≠ ∅), (6)

where Λ(O′) is an arbitrary element of O′. If {0,m} *
(Λ(O′) + k)n for any k ∈ Zn, then we must have

1

n

n−1∑
k=0

I((Λ(O′) + k)n ∩ {0,m} ̸= ∅) =
2ℓO′

n
. (7)

Combing (5), (6), and (7) gives∑
A∈O I(A ∩ {0,m} ≠ ∅)∑

A′∈O′ I(A′ ∩ {0,m} ̸= ∅)
≤ 3|O|

2ℓO′ |O′|
,

which contradicts (4).
The next result shows that the conjecture holds for Shannon-

type inequalities.
Proposition 4: If ~O ≥ ~O′ is a Shannon-type inequality,

then there must exist A ∈ O and A′ ∈ O′ such that A ⊆ A′.
It should be emphasized that the converse of our conjecture

is not true since otherwise O ≽ On−1 whenever ℓO ≤ n− 1
(which clearly violates the dominance relationship illustrated
in Fig. 1 for n = 4 and n = 6).

B. Sufficient Conditions for O ≽ O′

In this subsection we develop a graphical method that
integrates the submodularity of the entropy function with the
symmetry of Cn. This method leads to simple derivations of
several results on the dominance relationship which would be
otherwise difficult to obtain using the general machinery for
submodular functions.

Given any S ⊆ Zn, define S′ = S ∩ (S + 1)n and S′′ =
S ∪ (S + 1)n. It follows by the submodularity of the entropy
function that

H(XS) +H(X(S+1)n) ≥ H(XS′) +H(XS′′). (8)

Averaging over all cyclically shifted versions of (8) gives

2

|O(S)|
∑

A∈O(S)

H(XA) ≥
1

|O(S ′)|
∑

A′∈O(S′)

H(XA′)

+
1

|O(S ′′)|
∑

A′′∈O(S′′)

H(XA′′). (9)

We shall say that O(S ′) (O(S ′′)) can be obtained from O via
the (+1) operation, and connect them with a directed edge
from O(S) to O(S ′) (O(S ′′)). Applying this operation to
every orbit of Cn yields a directed graph (see those graphs
labelled with (+1) in Fig. 2). In such a graph, there are two
outgoing edges from each orbit except the two absorbing orbits
O0 and On; moreover, from each non-empty orbit, there exists
(at least) one directed path to O0 and one directed path to
On. For each orbit O, let D(O) denote the set of orbits that
can be obtained from O via the (+1) operation. Note that
|D(O)| = 2 if O is a non-absorbing orbit and |D(O)| = 1

if it is an absorbing orbit. Define a Markov process {Mt}∞t=0

over this directed graph such that

P(Mt+1 = O′|Mt = O) =
1

|D(O)|
, t ≥ 0,

for any orbit O of Cn and any O′ ∈ D(O). It follows by (9)
that

1

|O|
∑
A∈O

H(XA)

≥
∑

O′∈D(O)

P(M1 = O′|M0 = O)
|O′|

∑
A′∈O′

H(XA′).

More generally, we have

1

|O|
∑
A∈O

H(XA)

≥
∑
O′

P(Mt = O′|M0 = O)
|O′|

∑
A′∈O′

H(XA′), t ≥ 0.

For the purpose of proving O ≽ O′, it suffices to have P(Mt =
O0 or O′|M0 = O) → 1 as n → ∞ (with O′ set to be an
absorbing state). It is thus clear that O ≽ O′ if every directed
path from O to On goes through O′.
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O4,1 O4,2 O4,3

O5
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Fig. 2. Directed orbit graphs (with an orbit-independent operation) for n ≤ 6.

This observation immediately yields the following result,
which was first proved in [9] using a subset entropy inequality
of Madiman and Tetali [11].

Proposition 5: O ≽ On for any non-empty orbit O.



The same observation can also be used to establish (2).
However, it is apparent that the (+1) operation is just one
particular choice. More generally, we can define the (+m)
operation for any m ∈ N⌊n

2 ⌋ and construct the associated
directed orbit graph (see Fig. 2). This enables us to establish
a generalized sliding-window subset entropy inequality.

For any m ∈ N⌊n
2 ⌋ and any i ∈ Ns (with s =

n/gcd(n,m)), let

A(m)
i =

i−1∪
k=0

{(km)n}.

The sliding-window subset entropy inequality (2) can be
viewed as a special case of the following result with m = 1.

Proposition 6: O(A(m)
1 ) ≽ O(A(m)

2 ) ≽ · · · ≽ O(A(m)
s )

for any m ∈ N⌊n
2 ⌋.

Proof: This result follows from the simple observation
that O0 ← O(A(m)

1 ) ↔ · · · ↔ O(A(m)
s−1) → O(A

(m)
s ) is a

chain in the directed orbit graph associated with the (+m)
operation.

As illustrated in Fig. 1, for n = 5, we have O ≽ O4

whenever ℓO ≤ 4. However, this result cannot be obtained
by using the (+1) operation or the (+2) operation alone (see
Fig. 2). A possible remedy is to consider directed graphs with
orbit-dependent operations. For example, one can modify the
directed orbit graph associated with the (+1) operation by
applying the (+2) operation to O3,2 and obtain a new graph
(see Fig. 3) that has the desired property. This line of thought
leads to the following result.

O2,1 O2,2

O3,1 O3,2

O0

O1

O4

O5

Fig. 3. A directed orbit graph (with orbit-dependent operations) for n = 5.

Proposition 7: Assume that n is a prime number. We have
O ≽ On−1 for any non-empty orbit O with ℓO ≤ n− 1.

Proof: Given each orbit O with ℓO ≤ n − 2, pick m ∈
N⌊n

2 ⌋ such that {0,m} ⊆ Zn\A for some A ∈ O and apply
the (+m) operation to this orbit. It can be verified that the
resulting orbit graph has the desired property.

It can be readily seen from Fig. 1 that Proposition 7 does not
hold for n = 4 and n = 6. In fact, the following result, which
provides a complete characterization of c̄O,On−1 for the case
ℓO = n−2, shows that one can always find a counter-example
to Proposition 7 if n is not a prime number.

Proposition 8: For any non-empty orbit O, if Zn\{0,m} ∈

O for some m ∈ N⌊n
2 ⌋, then

c̄O,On−1 =
(n− 1)(n− gcd(n,m)− 1)

(n− 2)(n− gcd(n,m))
.

Proof: Let X(km)n , k ∈ Zs−1, be s−1 mutually indepen-
dent uniformly distributed Bernoulli random variables, and let
X((s−1)m)n be their modulo-2 sum, where s = n/gcd(m,n);
moreover, set Xi = 0 for i ∈ Zn\

∪s−1
k=0{(km)n}. It can be

verified that

~O =
n(s− 1)− s

n(n− 2)
,

~On−1 =
s− 1

n− 1
,

which implies

c̄O,On−1 ≤
(n− 1)(n− gcd(n,m)− 1)

(n− 2)(n− gcd(n,m))
.

The proof of a matching lower bound is omitted.

IV. CONCLUSION

We have undertaken a detailed study of cyclically symmetric
entropy inequalities with an emphasis on those which only
require the submodularity of the entropy function. It is worth
mentioning that the inequalities unveiled in the present paper
can be used to obtain new conclusive results on multilevel
diversity coding and multiple description coding.
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