
Overhead-free In-place Recovery Scheme for
XOR-based Storage Codes

Ximing Fu∗, Zhiqing Xiao†, and Shenghao Yang‡
∗Department of Computer Science and Technology, Tsinghua University, Beijing, China

†Department of Electronic Engineering, Tsinghua University, Beijing, China
‡Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

fxm13@mails.tsinghua.edu.cn, xzq.xiaozhiqing@gmail.com, shyang@tsinghua.edu.cn

Abstract—This paper proposes a novel recovery scheme for the
XOR-based storage codes with the increasing-difference property.
For a message of kL bits stored in n storage nodes, a data
collector connects any k out of the n storage nodes to recover
the message. In our scheme, the data collector acquires exactly
L bits for each node, so that no transmission overhead exists.
Furthermore, we propose an in-place decoding algorithm that
acquires less auxiliary space than the existing decoding algorithm,
and the decoding computational complexity of our decoding
algorithm is the same as the existing decoding algorithm.

Index Terms—Distributed storage system, maximum distance
separable code, recovery scheme, in-place decoding.

I. INTRODUCTION

In a distributed storage system, a message is divided into k
blocks, each of which consists of L bits. These k blocks are

encoded into n packets using a storage code, each of which is

stored in a distinct node. When a data collector (called DC)

wants to recover the message, it requires data from a subset of

the n nodes. A storage codes is Maximum Distance Separable

(MDS) when two preconditions are satisfied, the first of which

is that each node in the n nodes stores L bits (perhaps with

some overheads), and the second is that DC can recover the

message from any k out of the n nodes.

Reed-Solomon code is the most celebrated MDS code, and

is widely used in storage systems [1]. The encoding and

decoding of Reed-Solomon codes require operations over large

finite fields, whose complexity is high. Therefore, storage

codes using bitwise exclusive-or’s (XOR) for encoding and

decoding are of interests due to the low computational cost.

Paper [2]–[8] proposed some MDS codes that can correct

one, two, or three node failures. Later, [9] proposed an MDS

code that can decode at O
(
k2L3

)
times. In order to further

reduce the complexity of encoding and decoding, a new type

of storage codes were proposed in [10]. These codes use

bit shifting and fewer XOR operations in the encoding and

decoding process, and they are able to recover the message

from any k out of the n nodes. Specifically, if the generator

matrix of the storage code satisfies the increasing-difference
property, an associated decoding algorithm, called ZigZag

decoding, can correctly recover the message using O
(
k2L

)
XOR’s. However, since both the number of stored bits in each

node and the number of transmitting bits from each node are

larger than L, the codes proposed in [10] are not strictly MDS.

TABLE I
COMPARISON BETWEEN OUR RESULT AND THE PREVIOUS RESULT

Recovery Recovery Bandwidth Extra Decoding Decoding Time
Scheme for Node i Storage Complexity

ZigZag decoding [10] L+ i (k − 1) O (kL) O
(
k2L

)

Our recovery scheme L O (k logL) O
(
k2L

)

Moreover, the ZigZag decoding requires considerable auxiliary

space at the same time.

This paper considers the XOR-based storage codes in [10],

where the encoding and decoding operations are limited to

bit-shifting and XOR. We propose a novel recovery scheme,

which is different from the ZigZag decoding, for the storage

codes in [10]. The characteristics of this recovery scheme

include:

1) No Transmission Overheads: In order to recover the

message of kL bits, only kL bits are needed to transmit from

the k nodes to DC. Therefore, our scheme is optimal in terms

of the transmission efficiency.

2) In-place Decodable: After the transmissions, the kL bits

of message are stored in k vectors of length L. Then an

in-place decoding algorithm is executed to transform the k
vectors into the recovered message. The algorithm overwrites

the data when it is being executed, and only O (k logL) extra

space is needed to store the auxiliary variables. After the

algorithm execution completes, the k vectors become exactly

the desired recovered message.

3) Exclusive-or Implementable: Exclusive-or of two bits is

one of the fastest operations to implement. In our recovery

algorithm, we use no operations but XOR. Additionally, the

number of XOR operations is O
(
k2L

)
when L is large, and

it is the lowest complexity as far as we know.

The comparisons between our scheme and the existing

recovery scheme using ZigZag decoding are summarized in

Table I.

The rest of the paper is organized as follows: The distributed

storage system is described in Section II. And Section III

presents our recovery scheme. Specifically, Section III-A and

Section III-B introduce the transmission procedure and the

decoding procedure in the recovery scheme, respectively. We

provide a theorem to show the correctness of the recovery

scheme, which is proved in Section V. Moreover, an example

2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications

978-1-4799-6513-7/14 $31.00 © 2014 IEEE

DOI 10.1109/TrustCom.2014.70

552

for the recovery is given in Section IV. Finally, in Section VI,

we summarize the paper.

II. SYSTEM DESCRIPTION

The encoding scheme of the distributed storage system in

this paper follows that of [10]. The message consists of k
blocks, namely, x1,x2, · · · ,xk. The generator matrix Ψ is an

n× k matrix,

Ψ =

⎛
⎜⎜⎜⎝
zt1,1 zt1,2 · · · zt1,k

zt2,1 zt2,2 · · · zt2,k

...
...

. . .
...

ztn,1 ztn,2 · · · ztn,k

⎞
⎟⎟⎟⎠

where ti,j ∈ N (1 ≤ i ≤ n, 1 ≤ j ≤ k) satisfies the increasing-
difference property [10]: for any i, i′, j, and j′ such that i < i′

and j < j′,

0 < ti,j′ − ti,j < ti′,j′ − ti′,j .

(Normally, if ti,j = i (j − 1), the matrix Ψ is a Vandermonde

matrix.)

These k blocks of message are encoded into n packets,

y1,y2, · · · ,yn, according to the generator matrix. Specifi-

cally, to generate yi (1 ≤ i ≤ n), pad ti,j zero bits and

(ti,k − ti,j) zero bits to the leftmost and the rightmost of xj

(1 ≤ j ≤ k), respectively, which results in a sequence of bits

of length (L+ ti,k) denoted by

zti,jxj =
(
01×ti,j ,xj ,01×(ti,k−ti,j)

)
where 01×m is an m-dimensional row vector whose elements

are all zero. This padding operation can be regarded as shifting

the original block xi right by ti,j bit, thus the padded result can

be denoted as zti,jxj . Then yi = (yi [1] , · · · , yi [L+ ti,k]) is

formed by

yi =
k∑

j=1

zti,jxj . (1)

There are n nodes, indexed by 1, 2, · · · , n, in the distributed

storage system. The ith coded packet yi is stored in node i
(1 ≤ i ≤ n). DC can recover the message from any k out of

the n nodes.

III. RECOVERY SCHEME

This section gives our scheme to recover the message from

arbitrary k nodes. This scheme consists of two stages, namely,

the transmission stage and the decoding stage. Theorem 1

guarantees that DC is able to recover the original message

via these two stages.

A. Transmission Stage

Fix a set of k nodes. Now DC needs to recover the original

message from the coded packets stored in these k nodes. First,

DC sorts the indices of the k nodes in descending order,

resulting in the sequence of indices i1, i2, · · · , ik (n ≥ i1 >
i2 > ... > ik ≥ 1). For 1 ≤ u ≤ k, DC tells node iu that its

index is the uth largest one among those k nodes. Then node

iu obtains the value of tiu,u and transmits L bits of the packet

yiu from the (tiu,u + 1)th bit to the (tiu,u + L)th bit, to DC.

Then DC stores the L bits in x̂u = (x̂u [1] , · · · , x̂u [L]).
Transmission bandwidth: For every node, it needs to trans-

mit L bits. So the total number of bits to transmit is kL.

B. Decoding Stage

Algorithm 1 In-place Decoding

Input: coded packets stored in x̂u, and corresponding node

indices iu (1 ≤ u ≤ k), which satisfies i1 > i2 > ... > ik.

Output: recovered message, stored in x̂u (1 ≤ u ≤ k).

Step 1: (Initialize auxiliary variables)
1: Initialize a vector (l1, l2, . . . , lk) to a zero vector: lu ← 0

(1 ≤ u ≤ k). (This vector will store the number of bits

that have been recovered successfully.)

Step 2: (In-place decoding)
2: while lk < L (Iterate until the message is fully recov-

ered.) do
3: for u← 1 : k do
4: if (lu < L) and (u = 1 or lu−1 > tiu,u − tiu,u−1)

(Both “and” and “or” here are short-circuit logical

operators, i.e., the courses in the right operand will

not be evaluated when the left operand is enough to

indicate the result.) then
5: lu ← lu + 1; (Freeze one more bit in x̂u.)

6: for v ← 1 : k do
7: if v �= u and 0 < lu + tiv,u − tiv,v ≤ L then
8: x̂v[lu + tiv,u − tiv,v]← x̂v[lu + tiv,u − tiv,v]

⊕x̂u [lu]; (Eliminate the superposed bits.)

9: end if
10: end for
11: end if
12: end for
13: end while

After the transmissions, DC uses an in-place decoding

algorithm to recover the message from x̂u (1 ≤ u ≤ k). The

detail of this algorithm is presented in Algorithm 1. In this

algorithm, we use a vector (l1, . . . , lk) to record the number

of decoded bits in (x1,x2, . . . ,xk). Specifically, when lu = l
(1 ≤ u ≤ k), the bits x̂u [1] , . . . , x̂u [l] have been exactly

equal to xu [1] , . . . , xu [l]. In the initialization step, all entries

in (l1, . . . , lk) are set to zero. During the iterations, each entry

in (l1, . . . , lk) increases gradually to L (see the subsequent

description). Finally, all entries in (l1, . . . , lk) become L,

which means that the message has been fully recovered.

Consider every iteration of the for loop in Line 3. At the

beginning of every iteration, DC judges whether xu has been

fully recovered. If lu = L, the xu has been fully recovered,

and no further operations are needed. Otherwise (lu < L), DC

tries to decode the bit xu [lu + 1]. Let l be the current value of

lu+1 (1 ≤ l ≤ L). When u = 1 or lu−1 > tiu,u− tiu,u−1, the

bit x̂u [l] has become the original message bit xu [lu + 1], so

DC increases lu from l−1 to l to record the successful recovery

of the bit xu [l]. After that, DC eliminates the recovered

bit xu [l] from x̂v (v �= u). According to the encoding

553

scheme, xu [l] is superposed on yiv [l + tiv,u] (v �= u).

Note that node iv transmits yiv ranging from (tiv,v + 1) to

(tiv,v + L). Therefore, when tiv,v < l + tiv,u ≤ tiv,v + L (or

0 < l + tiv,u − tiv,v ≤ L equivalently), xu [l] is involved

in generating x̂v [l + tiv,u − tiv,v]. Line 8 eliminates these

superposed bits.

During the execution of the decoding, the entries of

(l1, . . . , lk) increase in the following way: At the first several

iterations, only l1 increases while other entries remain zero.

After l1 becomes (ti2,2 − ti2,1 + 1), l2 begins to increase

in the same pace with l1. From then on, (l2 − l1) is kept

to be (ti2,2 − ti2,1) until l1 reaches L and stops increasing.

Similarly, for any u �= 1, lu begins to increase when lu−1

becomes (tiu,u − tiu,u−1 + 1), and (lu − lu−1) is kept to be

(tiu,u − tiu,u−1) until lu−1 reaches L. Finally, all entries in

(l1, l2, . . . , lk) end up in L.

Remarkably, for any snapshot of the decoding process, lu >
lu−1 (1 < u ≤ k). Therefore, we have

L ≥ l1 ≥ l2 ≥ · · · ≥ lk ≥ 0

at any time. Furthermore, when lk becomes L, lu = L
(1 ≤ u ≤ k), and the stored vectors have become the source

message, i.e.,

x̂u = xu, 1 ≤ u ≤ k.

The decodability of the in-place decoding algorithm is ensured

by the following theorem:

Theorem 1: Consider the MDS storage system with a gen-

erator matrix Ψ satisfying the increasing-difference property.

DC collects k nodes indexed by I = {iu : 1 ≤ u ≤ k}
(where i1 > i2 > · · · > ik without loss of generality).

The node iu (1 ≤ u ≤ k) transmits each packet within

the range of [tiu,u + 1, tiu,u + L], and DC stores them in

x̂u = (x̂u [1] , · · · , x̂u [L]). DC can decode message using the

in-place decoding algorithm, and the recovered k blocks are

in x̂1, · · · , x̂k.

Theorem 1 is proved in Section V.

C. Complexity Analysis

Space Complexity: In the algorithm, no extra space is

needed to store the temporary data, so this algorithm is in-

place. Actually, the only auxiliary space to allocate is for

the vector (l1, l2, . . . , lk). Since every entry in (l1, l2, . . . , lk)
should be able to store an integer within the range of [0, L], it

needs to occupy O (logL) bits. Therefore, the overall auxiliary

decoding space is O (k logL) bits.

Time Complexity: In the algorithm, the while-loop (in

Line 2) will iterate

L+
k∑

u=2

(tiu,u − tiu,u−1)

times. Considering that (proved in Lemma 1 in Section V)

k∑
u=2

(tiu,u − tiu,u−1) < ti1,k − ti1,1,

TABLE II
PARAMETERS IN THE EXAMPLE

u iu tiu,u Transmitted bits Stored bits in DC

1 4 0 y4 [l] (1 ≤ l ≤ L) x̂1 [l] = y4 [l] (1 ≤ l ≤ L)
2 3 3 y3 [l] (4 ≤ l ≤ L+ 3) x̂2 [l] = y3 [l + 3] (1 ≤ l ≤ L)
3 1 2 y1 [l] (3 ≤ l ≤ L+ 2) x̂3 [l] = y1 [l + 2] (1 ≤ l ≤ L)

we have

L+

k∑
u=2

(tiu,u − tiu,u−1) < L+ ti1,k.

Normally when the generator matrix is the Vandermonde

matrix, ti1,k < kn and L � kn, the iteration of the

while-loop is executed in O (L) times. Additionally, either of

the two inner for-loops in Line 3 and Line 6 iterate O (k)
times. Therefore, the overall time complexity of this decoding

algorithm is O
(
k2L

)
.

D. Comparison with Previous Recovery Scheme

The recovery scheme in [10] also consists of two stages.

In the first stage, the storage nodes need to transmit all their

packets to DC. For node i, the length of packet is L+i (k − 1).
Therefore, the number of bits to transmit from node i to DC

is L + i (k − 1). Compared to this scheme, our scheme only

acquires node i to transmit L bit to DC, which is optimal in

terms of transmission efficiency.

Furthermore, the ZigZag decoding in [10] needs an O (kL)
auxiliary space to record the current decoded process, then

does the cancellation according to the records. The auxiliary

space is even larger than the recovered message. Compared to

the ZigZag decoding, our in-place decoding uses an integer

lu (1 ≤ u ≤ k) to record the number of decoded bits in

the vector x̂u, and does not require other extra space. In this

way, our decoding algorithm uses much less auxiliary space

to complete the decoding.

IV. AN EXAMPLE OF THE RECOVERY SCHEME

This section provides an example to illustrate the recovery

scheme. In this example, there are n = 5 packets encoded

from k = 3 message blocks. Here we use the Vandermonde

matrix as the generator matrix, which is

Ψ =

⎛
⎜⎜⎜⎜⎝
1 z z2

1 z2 z4

1 z3 z6

1 z4 z8

1 z5 z10

⎞
⎟⎟⎟⎟⎠

where ti,j = i (j − 1). The source message consists of three

blocks x1,x2,x3. After the encoding, the packet stored in

node i (1 ≤ i ≤ 5) is shown in (1).

Next, we will show how to recover x1, x2, and x3. Without

loss of generality, let DC connect node 1, node 3, and node

4. The related parameters are shown in Table II. Using the

recovery scheme, the packets transmitted to DC are shown in

Table III, IV, and V.

554

TABLE III
DATA STORED IN x̂1 AFTER THE TRANSMISSIONS

x̂1
x̂1[1] x̂1[2] x̂1[3] x̂1[4] x̂1[5] . . .

x̂1[8] x̂1[9] . . .
x̂1[L]

(y4[1]) (y4[2]) (y4[3]) (y4[4]) (y4[5]) (y4[8]) (y4[9]) (y4[L])

⊕
x1[1] x1[2] x1[3] x1[4] x1[5] . . . x1[8] x1[9] . . . x1[L]

x2[1] . . . x2[4] x2[5] . . . x2[L−4]
x3[1] . . . x3[L−8]

TABLE IV
DATA STORED IN x̂2 AFTER THE TRANSMISSIONS

x̂2
x̂2[1] x̂2[2] x̂2[3] x̂2[4] . . .

x̂2[L−3] x̂2[L−2] x̂2[L−1] x̂2[L]
(y3[4])(y3[5])(y3[6])(y3[7]) (y3[L]) (y3[L+1])(y3[L+2])(y3[L+3])

⊕
x1[4] x1[5] x1[6] x1[7] . . . x1[L]
x2[1] x2[2] x2[3] x2[4] . . .x2[L−3]x2[L−2] x2[L−1] x2[L]

x3[1] . . .x3[L−4]x3[L−3] x3[L−2] x3[L−1]

TABLE V
DATA STORED IN x̂3 AFTER THE TRANSMISSIONS

x̂3
x̂3[1] x̂3[2] x̂3[3] . . .

x̂3[L−2] x̂3[L−1] x̂3[L]
(y1[3]) (y1[4]) (y1[5]) (y1[L]) (y1[L+1]) (y1[L+2])

⊕
x1[3] x1[4] x1[5] . . . x1[L]
x2[2] x2[3] x2[4] . . . x2[L−1] x2[L]
x3[1] x3[2] x3[3] . . . x3[L−2] x3[L−1] x3[L]

Decoded Algorithm: After the transmissions, the transmitted

bits are stored in x̂1, x̂2, and x̂3. Now we execute the decoding

algorithm. In the beginning, we can recover x1 [1], x1 [2], and

x1 [3] directly, and l1 changes from 0 to 3. Because ti3,1 =
0 and ti3,3 = 2, we have 0 < l1 + ti3,1 − ti3,3 < L. Let

x̂3 [1] ← x̂3 [1] ⊕ x̂1 [3], and x1 [3] is eliminated from x̂3 [1].
Next, l1 ← l1 + 1 = 4, which indicates that x̂1 [4] = x1 [4].
After this update, l1 + ti2,1 − ti2,2 = 1, l1 + ti3,1 − ti3,3 =
2, so we can eliminate x1 [4] from x̂2[1] and x̂3[2]. Because

l1 > ti2,2 − ti2,1, we perform the operation l2 ← l2 + 1 = 1,

which results in x̂2 [1] = x2 [1]. Then we can eliminate x2 [1]
from x̂1 since 0 < l2 + ti1,2 − ti1,1 ≤ L. As the decoding

process goes on, we can decode all the bits of x̂1 and the

bits stored in x̂1 are exactly the message bits of x1. In this

situation, we have decoded x̂1, and the bits of x̂1 have been

eliminated from x̂2 and x̂3. We can continue the decoding

process without considering the first message block.

V. PROOF OF THE THEOREM

This section proves Theorem 1. First, we prove a lemma.

Lemma 1: Assume that the generator matrix satisfies the

increasing-difference property. L ≥ i1 > i2 > · · · > ik ≥ 1.

For any u, u′ such that 1 ≤ u < u′ ≤ k,

tiu′ ,u′ − tiu′ ,u
(1)

≤
u′∑

w=u+1

(tiw,w − tiw,w−1)
(2)
< tiu,u′ − tiu,u.

Proof: (1) Due to the increasing-difference property, for

w such that w < u′,
iw > iu′ ,

so

tiw,w − tiw,w−1 > tiu′ ,w − tiu′ ,w−1,

and for w such that w = u′,

iw = iu′ ,

so

tiw,w − tiw,w−1 = tiu′ ,w − tiu′ ,w−1.

Therefore, for w such that w ≤ u′,

tiw,w − tiw,w−1 ≥ tiu′ ,w − tiu′ ,w−1.

Consequently,

u′∑
w=u+1

(tiw,w − tiw,w−1) ≥
u′∑

w=u+1

(
tiu′ ,w − tiu′ ,w−1

)
= tiu′ ,u′ − tiu′ ,u.

(2) Due to the increasing-difference property, for w such

that w > u,

iw < iu,

and

tiw,w − tiw,w−1 < tiu,w − tiu,w−1.

Consequently,

u′∑
w=u+1

(tiw,w − tiw,w−1) <

u′∑
w=u+1

(tiu,w − tiu,w−1)

= tiu,u′ − tiu,u.

That proves the lemma.

Proof of Theorem 1: (1) Extend the original message

from xu [l] (1 ≤ u ≤ k, 1 ≤ l ≤ L) to x′u [l] (1 ≤ u ≤ k,

−∞ < l < +∞) by assuming

x′u [l] =

{
xu [l] , 1 ≤ l ≤ L

0, otherwise .

Then the encoding can be reformulated as

yi [l] =
k∑

j=1

x′j [l − ti,j],

since the padding zeros in x′u (1 ≤ u ≤ k) do not change the

value of yi (1 ≤ i ≤ n).

After the [tiu,u + 1, tiu,u + L]th bits of yiu have been

transmitted to DC, what x̂u stored is

x̂u [l] = yiu [l + tiu,u]

=
k∑

v=1

x′v [l + tiu,u − tiu,v]

= x′u [l]︸ ︷︷ ︸
desired

message bit

+

k∑
v=1
v �=u

x′v [l + tiu,u − tiu,v]

︸ ︷︷ ︸
superposed bits

, (2)

for 1 ≤ l ≤ L.

(2) Now we to show that, when the value of lu changes from

(l − 1) to l in the decoding algorithm (1 ≤ u ≤ k, 1 ≤ l ≤ L),

555

the value of x̂u [l] has been x′u [l]. That’s to say, all superposed

bits in Eq. (2), namely,

x′v [l + tiu,u − tiu,v] , v �= u,

have been eliminated from x̂u [l].
The mathematical induction is to be used here: (i) First,

we will show that the statement holds when (l1, l2, . . . , lk)
changes for the first time (i.e. l1 changes from 0 to 1); (ii) Next,

we will show that, for every change of (l1, l2, . . . , lk), if the

same statement holds for all previous changes, the statement

still holds for this change.

(2.i) The first change of (l1, l2, . . . , lk) is that the value of l1
changes from 0 to 1. Due to the increasing-difference property,

ti1,1 − ti1,v < 0, v �= 1,

which is equivalent to

1 + ti1,1 − ti1,v ≤ 0, v �= 1.

Consequently,

x′j [1 + ti1,1 − ti1,v] = 0, v �= 1.

Therefore, what x̂1 [1] stores after the transmissions is

x̂1 [1] = x′1 [1] +
k∑

j=1
j �=u

x′j [1 + tiu,u − tiu,j] = x′1 [1] .

Note that x̂1 [1] does not change before l1 changes to 1, so

x̂u [l] = x′u [l] for the first change of (l1, l2, . . . , lk).
(2.ii) Consider a particular change of (l1, l2, . . . , lk), say, the

change of lu from (l − 1) to l, where 1 ≤ l ≤ L. Assume that

all previous changes of (l1, l2, . . . , lk) satisfy the statement

that the all the first lu bits of x̂u have been determined and

are equal to the first lu bits of x′u.

In the decoding algorithm, L ≥ l1 ≥ l2 ≥ · · · ≥ lk ≥ 0
always holds. Accordingly, we can define e as

e =

{
0, l1 < L

max {u : lu = L} , l1 = L,

which indicates that e is the largest number within the range

of [0, k] such that l1 = l2 = · · · = le = L. Similarly, we can

define γ as

γ = max {u : lu > 0} .
According to the definition, γ is the smallest number within

[1, k] such that lγ+1 = · · · = lk = 0. It is obvious that e ≤
u ≤ γ, so all v’s such that v �= u fall into one of the four

following categories: (a) 1 < v ≤ e; (b) e < v < u; (c)

u < v ≤ γ; and (d) γ < v ≤ k.

(2.ii.a) For 1 < v ≤ e (when such v exists), all of the

bits in xv have been decoded, and their superposed bits have

been eliminated completely. Therefore, they do not affect the

current decoded bit x̂u [l] any more.

(2.ii.b) For e < v < u (when such v exists), 1 ≤ lv < L.

In the decoding algorithm, the first time that lv+1 increases is

when lv > tiv+1,v+1−tiv+1,v , and both lv+1 and lv increase in

the sequent iterations until lv ≤ L no longer holds. Therefore,

after the change of lu,

lv − lv+1 = tiv+1,v+1 − tiv+1,v,

which results in

lv − l =
u−1∑
w=v

(lw − lw+1)

=
u−1∑
w=v

(
tiw+1,w+1 − tiw+1,w

)
=

u∑
w=v+1

(tiw,w − tiw,w−1).

Considering Lemma 1,

u∑
w=v+1

(tiw,w − tiw,w−1) ≥ tiu,u − tiu,v,

which results in

lv − l ≥ tiu,u − tiu,v,

and leads to

l + tiu,u − tiu,v ≤ lv.

Therefore, xv [l + tiu,u − tiu,v] has been eliminated from

x̂u [l].
(2.ii.c) For u < v ≤ γ (when such v exists), 1 ≤ lv < L. In

the decoding algorithm, the first time that lv increases is when

lv−1 > tiv,v − tiv,v−1, and both lv and lv−1 increase in the

sequent iterations until lv−1 < L no longer holds. Therefore,

before the change of lu,

lv−1 − lv = tiv,v − tiv,v−1,

and

(l − 1)− lv =
v∑

w=u+1

(lw−1 − lw)

=
v∑

w=u+1

(tiw,w − tiw,w−1).

Considering Lemma 1,

v∑
w=u+1

(tiw,w − tiw,w−1) < tiu,v − tiu,u.

Hence,

l − lv < tiu,v − tiu,u + 1,

which leads to

l + tiu,u − tiu,v ≤ lv.

Therefore, xv [l + tiu,u − tiu,v] has been eliminated from

x̂u [l].
(2.ii.d) For γ < v ≤ k (when such v exists), lv = 0. xv does

not affect the current bit x̂u [l]. Therefore, we do not need to

consider packet v in this case.

556

Combining these four cases, when lu changes to l, for any

v �= u, x′v [l + tiu,u − tiu,v] has been eliminated before, which

proves x̂u [l] = x′u [l].
(3) Now we show that the value of x̂u [l] never change after

lu has become l (1 ≤ u ≤ k, 1 ≤ l ≤ L).

Fix u and l. According to the encoding and decoding

algorithm, consider arbitrary v such that v �= u. If there exists a

lv ∈ [1, L] such that l = lv+tiv,u−tiv,v , the vth packet affects

x̂u once and only once, and the impact is to eliminate the

superposed bit x′v [lv] out of x̂u [l]. Otherwise, the vth packet

has no impact on x̂u [l]. In the previous part of the proof, we

have shown that this prospective modification occurs before

lu changes to l. Therefore, it does not affect x̂u [l] after lu
changes to l, and x̂u [l] would never change henceforth.

(4) Since the value of x̂u [l] is x′u [l] when the value of lu
changes to l, and this value of x̂u [l] never changes afterwards,

the value of x̂u [l] is x′u [l] when the decoding algorithm is

completed. Note that x′u [l] = xu [l] for all 1 ≤ u ≤ k, 1 ≤
l ≤ L, so what x̂1, · · · , x̂k store now are exactly the original

message.

VI. CONCLUSION

This paper proposes a recovery scheme for XOR-based MD-

S storage codes that satisfies the increasing-difference proper-

ty. Our scheme consists of two stages, namely, a transmission

stage and an in-place decoding stage. In the transmission stage,

our scheme totally eliminates the transmission overheads.

In the decoding stage, our in-place decoding algorithm can

decode the received packets with little auxiliary space.

ACKNOWLEDGMENT

This work was supported by the National Basic Research

Program of China (973 Program) under Grant 2013CB834205

and the National Natural Science Foundation of China under

Grant 61133013.

REFERENCES

[1] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, pp. 300–
304, Jun. 1960.

[2] J. Blmer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-
man, “An XOR-based erasure-resilient coding scheme,” IGSI Technical
Report No. TR-95-048, Aug. 1995.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[4] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 529–542,
Mar. 1996.

[5] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low-density MDS codes
and factors of complete graphs,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 1817–1826, Sep. 1999.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
USENIX Conf. File and Storage Technologies, Mar. 2004, pp. 1–14.

[7] G. Feng, R. Deng, F. Bao, and J. Shen, “New efficient MDS array
codes for RAID, Part I: Reed-Solomon-like codes for tolerating three
disk failures,” IEEE Trans. Comput., vol. 54, no. 9, pp. 1071–1080, Sep.
2005.

[8] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Trans. Comput., vol. 57, no. 7, pp.
889–901, Jul. 2008.

[9] G. Feng, R. Deng, F. Bao, and J. Shen, “New efficient MDS array codes
for RAID, Part II: Rabin-like codes for tolerating multiple (≥ 4) disk
failures,” IEEE Trans. Comput., vol. 54, no. 12, pp. 1473–1483, Dec.
2005.

[10] C. Sung and X. Gong, “A ZigZag-decodable code with the MDS
property for distributed storage systems,” in IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 341–345.

557

