
Overhead-free In-place Recovery and Repair
Schemes of XOR-based Regenerating Codes

Ximing Fu∗, Zhiqing Xiao†, and Shenghao Yang‡
∗Department of Computer Science and Technology, Tsinghua University

†Department of Electronic Engineering, Tsinghua University
‡Institute of Network Coding, The Chinese University of Hong Kong

Abstract—In this paper, refined recovery and repair schemes
are proposed for a storage system using the XOR-based MBR
regenerating storage code proposed by Hou et al. Our schemes
have zero transmission overhead for both recovery and repair,
i.e., the total number of transmitted bits for repair/recovery is
exactly equal to the total number of bits repaired/recovered.
Further, our schemes use mainly XOR operations and have lower
complexity than that of the previous schemes. Moreover, our
schemes require only a small amount of auxiliary space, which
qualifies our schemes as in-place.

I. INTRODUCTION

Regenerating codes were proposed for distributed storage
systems in [1]–[3]. In a typical setting, a file of M bits
is encoded and stored at n storage nodes. The file can be
recovered by accessing any k storage nodes. When a storage
node fails, a new node can be regenerated by accessing any
d surviving nodes such that the new set of n storage nodes
preserves the above recovery and regenerating properties. A
regenerating code with the above parameters is also called an
[n, k, d] code. Suppose that each storage node stores α bits and
the regenerating bandwith is γ bits, i.e., the total number of bits
communicated from the d nodes during regenerating. Dimakis
et al. [3] characterized a fundamental tradeoff between the
storage per node and the regenerating bandwidth.

Two extremal points in the optimal storage-bandwith trade-
off curve are of particular interest, i.e., the minimum-storage
regenerating (MSR) point and minimum-bandwidth regenerat-
ing (MBR) point. The regenerating codes attaining the MSR
point store α = M

k bits in each node. Since each k nodes
can be used to recover the original file, such regenerating
codes have zero recovery overhead, i.e., the total recovery
bandwidth is equal to the file size. The regenerating codes
attaining the MBR point have the minimum repair bandwidth
γ = M

k
2d

2d−k+1 and α = γ. Accessing kα = M 2d
2d−k+1 bits

from any k nodes is sufficient to recover the original file. But
kα is strictly larger than M when k > 1 so that an MBR code
may not have zero recovery overhead. We focus on MBR codes
in this paper.

Rashmi, Shah and Kumar [4] provided product-matrix
constructions of MBR codes for all valid values of [n, k, d]

This work was supported in part by the National Basic Research Program
of China (973 Program) under Grant 2013CB834205 and the National Natural
Science Foundation of China (NSFC) under Grant 61133013 and 61471215.
This work was partially funded by a grant from the University Grants
Committee of the Hong Kong Special Administrative Region (Project No.
AoE/E-02/08).

and MSR codes for d ≥ 2k − 2. The product-matrix MBR
codes, however, require matrix operations over finite fields
for encoding and recovery, which leads to high complexity
for practical systems. To resolve this complexity issue, Hou
et al. [5]–[7] proposed BASIC codes using an exclusive-or
(XOR) version of the product-matrix constructions. For BASIC
codes, encoding and recovery mainly use binary XOR and shift
operations, so the computational complexities are significantly
reduced.

In a BASIC MBR code, a file of M bits are divided into
B = kd−

(
k
2

)
sequences, each of which consists of L =M/B

bits. After encoding, each storage node stores d encoded
packets. In the recovery algorithm introduced in [5], kd packets
are retrieved from k storage nodes and the B sequences
are recovered by solving d linear systems of dimension k.
Due to the shift operations, the packets encoded may be
of different length but all have at least L bits. This packet
overhead (the number of bits in a packet minus L) would
affect the recovery bandwidth. The recovery bandwidth, the
extra decoding storage and the computational complexity in
the recovery algorithm of [5] are given in Table I. In the worst
case, about 2M bits are transmitted to recover the M bits.

In this paper, we propose a more efficient recovery scheme
for BASIC codes, which works for all valid values of [n, k, d].
Our recovery scheme has two stages: the retrieving stage
and the decoding stage. In a BASIC MBR code, each node
stores more than M/k bits. In the retrieving stage of our
scheme, exactly M bits are retrieved from any k storage
nodes. Therefore, our scheme achieves the optimal recovery
bandwidth exactly. In other words, our scheme implies that it
is possible to achieve zero recovery overhead for MBR codes.
In the decoding stage of our scheme, the M bits retrieved in the
first stage are used to recover the original file. Our algorithm
is similar to the ZigZag decoding of Sung and Gong [8]
designed for a storage code based on XOR and shift operations.
We optimize their algorithm for BASIC MBR codes to gain
lower computational and storage complexities. Specifically, the
number of XOR operations used in our recovery scheme is
O
(
dk2L

)
. After retrieving the data from the storage nodes, our

decoding algorithm overwrites the data during execution, and
only consumes O (k logL) extra storage space for auxiliary
variables. After the algorithm executing, the M bits in the
memory storing the retrieved data become exactly the desired
file. Therefore, our decoding algorithm is in-place.

The packet overhead also affects the repair bandwidth. For
the repair scheme of BASIC codes in [4], [5], the total number

854978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015

TABLE I. COMPARISON BETWEEN OUR RESULT AND THE PREVIOUS
RESULT.

Recovery Recovery Extra Decoding Decoding Time
Scheme Bandwidth Storage Complexity

Recovery in [5] M 2d
2d−k+1 + O(nkd2) O (BL) O

(
d2k3nL

)
Our scheme M O (k logL) O

(
dk2L

)

of bits transmitted for repairing a storage node is larger than
the number of bits stored in the node. In this paper, we propose
an in-place repair scheme by applying an algorithm developed
in [9]. Our repair scheme is overhead free: the total number of
bits transmitted for repairing a storage node is exactly equal
to the number of bits stored in the node.

The rest of the paper is organized as follows: Section II
describes the XOR-based MBR codes. Section III introduces a
procedure that is used for both recovery and repair. Section IV
and Section V present our repair and recovery schemes respec-
tively.

II. XOR-BASED MBR CODES

In order to give a precise description of our recovery/repair
scheme, we introduce the encoding of the XOR-based [n, k, d]
MBR codes in [5] with a minor generalization. Without loss
of generality, we assume

2 ≤ k ≤ d ≤ n− 1.

The encoding of BASIC codes disperses a file into n storage
nodes. First, the file is divided into several sequences, and
these sequences are rearranged as a message matrix. After that,
the data packets in each node is obtained by multiplying an
encoding matrix with the message matrix. The details of the
encoding is described as follows.

A file of M bits is divided into

B = (k + 1)k/2 + k(d− k) = kd−
(
k

2

)
sequences, each of which consists of L = M/B bits. These
B sequences, denoted as x1,x2, . . . ,xB , are used to form the
message matrix M = (mi,j)1≤i,j≤d, which is a d× d matrix
with L-bit sequences as components. The message matrix M
is of the form

M =

(
S T

T> O

)
, (1)

where S = (si,j) is a k× k symmetric matrix, T = (ti,j) is a
k× (d− k) matrix, and O is a (d− k)× (d− k) zero matrix.
T> is the transpose of T.

The message matrix M can be formed by any one-to-one
mapping from {x1,x2, . . . ,xB} to the (k+1)k/2+k(d−k) =
B free components in M. For example, when k = 3 and d = 4,
we have B = 9, and the message matrix can be

M =

x1 x2 x4 x7

x2 x3 x5 x8

x4 x5 x6 x9

x7 x8 x9 0

 . (2)

The encoding matrix Ψ is an n × d matrix where the
i-th row and j-th column component is zti,j , a polynomial

in indeterminate z. Here ti,j is an integer. In [5], ti,j =
(i− 1) (j − 1) such that Ψ is a Vandermonde matrix. For
example, the Vandermonde matrix for n = 6 and d = 4 is

Ψ =


1 1 1 1
1 z z2 z3

1 z2 z4 z6

1 z3 z6 z9

1 z4 z8 z12

1 z5 z10 z15

 . (3)

In general, we may assume that {ti,j} satisfies the refined
increasing difference property, i.e., for any i, i′, j, and j′ such
that i < i′ and j < j′,

0 ≤ ti,j′ − ti,j < ti′,j′ − ti′,j , (4)

where the equality holds only when i = 1. (Note that in
the increasing difference property introduced in [8], the first
inequality in (4) is strict.) The encoding of BASIC codes
generates d packets for each of the n storage nodes using the
message matrix M and the encoding matrix Ψ. For a binary
sequence m and integer t, define the shift operation

ztm = (0t,m)

where 0t is a sequence of t zeros attached before m. Define
the formal multiplication of Ψ and M as

Y = (yi,j)1≤i≤n,1≤j≤d = ΨM, (5)

where

yi,j =

d∑
u=1

zti,umu,j .

Note that in the above summation, the addition is bit-wise
XOR. If two sequences are not of the same length, zeros
are appended after the shorter sequence before the addition
operation. It can be checked that yi,j has L+ ti,d bits.

Using the above notations, the d packets stored in the i-th
node are yi,j , j = 1, . . . , d. In the aforementioned example
with the message matrix in (2) and the encoding matrix in (3),
the coded packets stored in node i (1 ≤ i ≤ 6) are

yi,1 = x1 + zi−1x2 + z2(i−1)x4 + z3(i−1)x7,

yi,2 = x2 + zi−1x3 + z2(i−1)x5 + z3(i−1)x8,

yi,3 = x4 + zi−1x5 + z2(i−1)x6 + z3(i−1)x9,

yi,4 = x7 + zi−1x8 + z2(i−1)x9.

(6)

III. A BASIC PROCEDURE

Before describing our recovery and repair schemes, we give
a procedure that will be used repeatedly in our schemes.

Consider a file of kL bits represented by mi, i = 1, . . . , k,
where mi is an L-bit sequence. Let Φ = (zti,j) be an n× k
matrix where z is an indeterminate and ti,j , 1 ≤ i ≤ n, 1 ≤
j ≤ k, are integers satisfying the refined increasing difference
property. Let

[y1, . . . ,yn]
> = Φ[m1, . . . ,mk]

>,

where the matrix multiplication is defined as in (5). Note that
due to the shift operation, yi has L+ ti,k bits.

855

Algorithm 1 In-place Decoding for MDS Codes
Input: coded packets stored in m̂u, and corresponding node

indices iu (1 ≤ u ≤ k), which satisfy i1>i2> · · ·>ik.
Output: recovered messages, stored in m̂u (1 ≤ u ≤ k).

Step 1: (Initialize auxiliary variables)
1: Initialize a vector (l1, l2, . . . , lk) to a zero vector: lu ← 0

(1 ≤ u ≤ k). (This vector will store the number of bits
that have been recovered successfully.)
Step 2: (In-place decoding)

2: while lk < L (Iterate until the message is fully recovered.)
do

3: for u← 1 : k do
4: if (lu < L) and (u = 1 or lu−1 > tiu,u − tiu,u−1)

then
5: lu ← lu + 1; (Freeze one more bit in m̂u.)
6: for v ← 1 : k do
7: if v 6= u and 0 < lu + tiv,u − tiv,v ≤ L then
8: m̂v[lu+tiv,u−tiv,v]← m̂v[lu+tiv,u−tiv,v]

⊕m̂u [lu]; (Eliminate the superposed bits.)
9: end if

10: end for
11: end if
12: end for
13: end while

Suppose that we have a storage system of n nodes, where
node i stores yi.

The following scheme, proposed in [9], can recover the file
from any k out of the n storage nodes, where exactly kL bits
are retrieved from these k nodes.

Particularly, a data collector accesses k nodes indexed by
iu, 1 ≤ u ≤ k, where i1 > i2 > · · · > ik without loss of
generality. Let [i, j] be the set of integers {i, i + 1, . . . , j}
when i ≤ j. For a sequence of bits m, denote by m[i] the i-th
bit of the sequence and denote by m[i, j] the sub-sequence
of m in the range [i, j]. Node iu (1 ≤ u ≤ k) transmits to
the data collector the sub-sequence yiu [tiu,u + 1, tiu,u + L],
denoted by m̂u, i.e.,

m̂u = mu +

u−1∑
j=1

(
mj [tiu,u − tiu,j + 1, L] ,0tiu,u−tiu,j

)
+

k∑
j=u+1

(
0tiu,j−tiu,u

,mj [1, L+ tiu,u − tiu,j]
)
.

So the packet node iu transmitted to the data collector involves
all bits of sequence mu. All superposed bits from other
sequences can be eliminated by executing Algorithm 1 on m̂i,
resulting in m̂i = mi, i = 1, 2, . . . , k according to [9]. The
decoding algorithm is in-place.

IV. OUR REPAIR SCHEME

For an m × n matrix A, I ⊂ [1,m] and J ⊂ [1, n] we
denote by AI (resp. AJ) the submatrices of A formed by all
the columns (resp. rows) with indices in I (resp. J). When I =
i (resp. J = j), we also write Ai (resp. Aj) for convenience.

Let us first consider repair. For the storage code generated
above, a failed node can be repaired using any d out of the
remaining n− 1 nodes.

Suppose that node i fails, and we want to generate a new
storage node that stores d packets Yi = ΨiM, which is the
same as the d packets stored in node i. Note that each packet
of node i has L+ ti,d bits. Fix d surviving nodes with indices
ij , 1 ≤ j ≤ d, assuming i1 > i2 > · · · > id. In the repair
scheme of [4], [5], node ij transmits

rij = ΨijM(Ψi)> = Ψij (Yi)>

to the new storage node. The length of rij is L+ti,d+tij ,d bits.
Thus the repair bandwidth overhead, defined as the number
of bits transmitted minus the number of bits to repair, is∑d

j=1 tij ,d.

A better repair scheme is to apply the algorithm introduced
in the last section. Node ij transmits rij within the range of[
tij ,j + 1, tij ,j + L+ ti,d

]
for repair. Let m̂j = rij [tij ,j +

1, tij ,j+L+ti,d]. Yi can be decoded by executing Algorithm 1
on m̂j , j = 1, . . . , d. By this scheme, the repair bandwidth is
exactly equal to the number of bits of the repaired packets.

According to the analysis of Algorithm 1 in [9], the time
complexity of repair is O

(
d2 (L+ ti,d)

)
= O

(
d2L

)
.

V. OUR RECOVERY SCHEME

To recover the original file, in the method described in [4],
[5], the d packets stored in any k nodes are first retrieved,
and then the linear system formed by the retrieved packets is
solved to recover the original file. Note that the linear system
has dk equalities (formed by the dk packets) with B variables
x1, . . . ,xB . Since B < dk, there is redundancy in the linear
system. In the following of this paper, we will present a new
recovery scheme for the BASIC codes, which only retrieves
M bits from any k nodes.

A. Overview of our Scheme

Now let us consider the recovery scheme of BASIC MBR
codes. Our scheme recovers the message matrix M by first
recovering the submatrix T and then recovering the submatrix
S. Since the submatrix S is symmetric, only its upper triangle
components need to be recovered.

Recall the matrix Y defined in (5). We have

Yj+k = Ψ[1,k]Tj , j = 1, . . . , d− k.

Since Ψ[1,k] satisfies the refined increasing difference property,
according to our discussion in Section III, Tj can be recovered
by first retrieving a sub-sequence of the (j + k)-th packet
from any k out of the n storage nodes and then executing
Algorithm 1. The d − k columns of T can be recovered one
by one or in parallel.

After recovering T, we continue to recover the k columns
of S sequentially with the column indices in descending order.
Fix u with 1 ≤ u ≤ k. We have

Yu = Ψ[1,k]Su + Ψ[k+1,d](T
u)>

= Ψ[1,u]S
[1,u]
u + Ψ[u+1,k]S

[u+1,k]
u + Ψ[k+1,d](T

u)>. (7)

To recover S
[1,u]
u , we use a modified procedure of the one in

Section III (to be elaborated in the next subsection): When
u = k, Sk can be recovered by first retrieving a sub-sequence
of the k-th packet from any k out of the n storage nodes,

856

substituting the values of Tu, and then executing Algorithm 1.
When u < k, suppose that the columns of S with indices larger
than u have all been recovered. After retrieving a sub-sequence
of the u-th packet from any u out of the n nodes, we substitute
the values of S

[u+1,k]
u and Tu before executing Algorithm 1.

B. Overhead-free In-place Recovery Scheme

Our recovery scheme of a BASIC MBR code is able to
recover the file by retrieving data from any k out of the n
nodes. Without loss of generality, let the indices of the k nodes
be i1, i2, . . . , ik (i1 > i2 > · · · > ik). Our scheme consists of
two stages: the retrieving stage and the decoding stage.

1) Retrieving Stage: In this stage, for v ∈ [1, k],
totally (d− v + 1) packets of L bits are retrieved from
node iv . Particularly, for u ∈ [v, d], sub-sequence
yiv,u [tiv,v + 1, tiv,v + L] is transmitted to the data collector,
and stored as m̂v,u.

Consider the aforementioned example (see equations
in (6)). When the data collector connects to node 1, 3 and
4, we have i1 = 4, i2 = 3, and i3 = 1. The bits stored in the
data collector are illustrated as follows:

m̂1,1 = y4,1[1, L],

m̂1,2 = y4,2[1, L], m̂2,2 = y3,2[3, L+ 2],

m̂1,3 = y4,3[1, L], m̂2,3 = y3,3[3, L+ 2], m̂3,3 = y1,3[1, L],

m̂1,4 = y4,4[1, L], m̂2,4 = y3,4[3, L+ 2], m̂3,4 = y1,4[1, L],

where yi,j are given in (6).

2) Decoding Stage: The details of decoding algorithm are
shown in Algorithm 2, which includes two steps. In the first
step, matrix T is recovered using m̂v,u, 1 ≤ v ≤ k, k + 1 ≤
u ≤ d. In the second step, matrix S is recovered using m̂v,u,
1 ≤ v ≤ u ≤ k. These two steps are explained in detail as
follows.

Step 1: Recover T. This step contains (d− k) iterations.
For each u ∈ [k + 1, d], the data collector first uses Algorith-
m 1 to convert the sequences stored in m̂1,u, m̂2,u, . . . , m̂k,u

to sequences m1,u,m2,u, . . . ,mk,u (ref. Line 2). For any v
with 1 ≤ v ≤ k, mv,u is involved in generating yiw,v , 1 ≤
w ≤ v (ref. (7)). So the value of mv,u is substituted in m̂w,v ,
which is a sub-sequence of yiw,v (ref. Line 3–8). After the
substitution, m̂w,v is only related to mv′,u′ , 1 ≤ v′ ≤ u′ ≤ k.

Step 2: Recover S. This step contains k − 1 iterations.
In an iteration indexed by u, Algorithm 1 is used to convert
m̂1,u, m̂2,u, . . . , m̂u,u to m1,u,m2,u, . . . ,mu,u (ref. Line 10).
Since mv,u (1 ≤ v ≤ u − 1) are involved in generating the
bits in yiw,v (1 ≤ w ≤ v), the values of mv,u (1 ≤ v ≤ u−1)
are then substituted into m̂w,v(1 ≤ w ≤ v), which is a sub-
sequence of yiw,v (ref. Line 11–16). After the substitution,
m̂w,v (1 ≤ w ≤ v ≤ u − 1) are only affected by mv′,u′ , 1 ≤
v′ ≤ u′ ≤ u− 1.

After Step 2, m̂1,1 becomes exactly m1,1.
Example 1. Continue considering the aforementioned example
with n = 6, k = 3 and d = 4, where the data collector connects
to node 1, 3 and 4.

Since d = k + 1, Step 1 of Algorithm 2 has only one
iteration in this example, which converts m̂1,4, m̂2,4 and m̂3,4

Algorithm 2 In-place Decoding for MBR Codes
Input: coded packets stored in m̂u,v (1 ≤ u ≤ d, 1 ≤ v ≤

min (u, k)), and corresponding node indices ij (1 ≤ j ≤
k), which satisfies i1 > i2 > · · · > ik.

Output: recovered message, stored in m̂u,v .
Step 1: (Recover T)

1: for u← d downto (k + 1) do
2: Execute Algorithm 1 on m̂1,u, m̂2,u, . . . , m̂k,u with k

node indices i1, i2, . . . , ik.
3: for v ← 1 : k do
4: for w ← 1 : v do
5: m̂w,v[tiw,u−tiw,w+1, L]← m̂w,v[tiw,u−tiw,w+1, L]

+m̂v,u [1, L− tiw,u + tiw,w] . (Eliminate super-
posed bits in recovered sequences)

6: end for
7: end for
8: end for

Step 2: (Recover S)
9: for u← k downto 2 do

10: Execute Algorithm 1 on m̂1,u, m̂2,u, . . . , m̂u,u with u
node indices i1, i2, . . . , iu.

11: for v ← 1 : (u− 1) do
12: for w ← 1 : v do
13: m̂w,v[tiw,u−tiw,w+1, L]← m̂w,v[tiw,u−tiw,w+1, L]

+m̂v,u [1, L− tiw,u + tiw,w] . (Eliminate super-
posed bits in recovered sequences)

14: end for
15: end for
16: end for

to m1,4, m2,4 and m3,4, respectively. See (14), (15) and (16),
where the backslashes (\) illustrate the terms cancelled by the
decoding algorithm in Step 1. After that, the data collector
eliminates m1,4 from m̂1,1 (see (8)), eliminates m2,4 from
m̂1,2 and m̂2,2 (see (9) and (10)), and eliminates m3,4 from
m̂1,3, m̂2,3 and m̂3,3 (see (11), (12) and (13)).

Step 2 of Algorithm 2 has two iterations with u = 3, 2
respectively. In the iteration with u = 3, m̂1,3, m̂2,3, and
m̂3,3 are converted into m1,3, m2,3 and m3,3. See (11), (12)
and (13), where the slashes (/) illustrate the terms cancelled
by the decoding algorithm in Step 2 with u = 3. The data
collector eliminates m1,3 from m̂1,1 (see (8)), eliminates m2,3

from m̂1,2 (see (9)) and m̂2,2 (see (10)).

In the iteration with u = 2, m̂1,2 and m̂2,2 are converted
into m1,2 and m2,2. See (9) and (10), where the crosses
(×) illustrate the terms cancelled in this iteration. The data
collector eliminates m1,2 from m̂1,1 (see (8)).

After these two steps, the remaining bits are exactly the
original file.

C. Justification

In Step 1 of Algorithm 2, each column of T is recovered by
executing Algorithm 1, according to [9]. Due to the symmetry
of the message matrix, the effect of T in m̂i,j , 1 ≤ i ≤ j ≤ k
can be eliminated.

In Step 2 of Algorithm 2, our algorithm guarantees that for
u ∈ [1, k], when recovering the u-th column of S, all sequences
in the v-th (v > u) column have been recovered and hence can

857

m̂1,1 = x1[1, L] + (03,���
���XXXXXXx2[1, L− 3]) + (06,���

���x4[1, L− 6]) + (09,
hhhhhhx7[1, L− 9]) (8)

m̂1,2 = x2[1, L] + (03,��
���

�XXXXXXx3[1, L− 3]) + (06,��
���

�
x5[1, L− 6]) + (09,

XXXXXXx8[1, L− 9]) (9)
m̂2,2 = x3[1, L] + (���

�XXXXx2[3, L],02) + (02,��
���

�
x5[1, L− 2]) + (04,

XXXXXXx8[1, L− 4]) (10)
m̂1,3 = x4[1, L] + (03,���

���x5[1, L− 3]) + (06,���
���x6[1, L− 6]) + (09,

XXXXXXx9[1, L− 9]) (11)
m̂2,3 = x5[1, L] + (��

��x4[3, L],02) + (02,���
���x6[1, L− 2]) + (04,

XXXXXXx9[1, L− 4]) (12)
m̂3,3 = x6[1, L] +���

�x4[1, L] +���
�x5[1, L] +XXXXx9[1, L], (13)

m̂1,4 = x7[1, L] + (03,
XXXXXXx8[1, L− 3]) + (06,

XXXXXXx9[1, L− 6]) (14)
m̂2,4 = x8[1, L] + (XXXXx7[3, L],02) + (02,

XXXXXXx9[1, L− 2]) (15)
m̂3,4 = x9[1, L] +

XXXXx7[1, L] +XXXXx8[1, L]. (16)

be eliminated from the retrieved sequences m̂i,u, i ∈ [1, u].
Then recovering the u-th column of S can be performed by
executing Algorithm 1. As the decoding process goes on with
u from k to 2, all the components in the upper-triangular part
of S can be recovered. Because S is symmetric, all components
of S are obtained.

From the above analysis, we have the following theorem.

Theorem 1. Consider a BASIC MBR code with an encoding
matrix Ψ satisfying the refined increasing-difference property.
Fix any k storage nodes indexed by iu, 1 ≤ u ≤ k with i1 >
i2 > . . . > ik. For any v ∈ [1, k] and u ∈ [v, d], let m̂v,u =
yiv,u [tiv,v + 1, tiv,v + L]. Then the file encoded by the BASIC
MBR code can be recovered by executing Algorithm 2 on m̂v,u,
1 ≤ u ≤ d, 1 ≤ v ≤ min (u, k).

D. Complexity Analysis

1) Recovery Bandwidth: In the first stage of our scheme,
totally BL = M bits are transmitted, which is the minimum
possible number of bits required to recover a message of M
bits. In [5], however, totally

k∑
j=1

d
(
L+ tij ,d

)
= BL+

(
k

2

)
L+ d

k∑
j=1

tij ,d

bits are transmitted for recovery when nodes ij , j = 1, . . . , k
are used for recovery. Our new scheme saves

(
k
2

)
L +

d
∑k

j=1 tij ,d bits.

2) Time Complexity: XOR operations are primary opera-
tions in the decoding stage, so the number of XOR operations
can be used to indicate the time complexity.

In Step 1, recovering each column of T costs k2L XOR
operations and eliminating each column of T from other
retrieved sequences takes 1

2k(k+1)L XOR operations. There
are (d− k) iterations in this step, so the number of XOR
operations required in Step 1 is

T1 = (d− k)
(
k2 +

1

2
k(k + 1)

)
L.

In Step 2, iteration u (u ∈ [2, k]) needs u2L XOR
operations to execute Algorithm 1 and 1

2u (u− 1)L XOR
operations to eliminate the recovered sequences. Therefore, the

total number of XOR operations in the second step is

T2 =

k∑
u=2

(
u2L+

1

2
u(u− 1)L

)
.

Therefore, the total computational complexity is

T1 + T2 =

((
3

2
d− k

)
k2 +

1

2
dk − 1

)
L = O

(
dk2L

)
.

The number of XOR’s operations for recovery is
O
(
d2k3nL

)
in [5]. Therefore, our decoding algorithm reduces

the time complexity in the order of n, d and k.

3) Space Complexity: The only auxiliary space is used to
store the temporary data when executing Algorithm 1, which
takes k logL bits. Because the space can be reused for each
execution of Algorithm 1, the total auxiliary space is k logL
bits. In contrast, the original recovery algorithm in [5] costs
O
(
BL+ 1

2k (k − 1)L
)
= O (BL) auxiliary space.

REFERENCES

[1] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,” in IEEE Int. Conf. Computer
Communications, May 2007, pp. 2000–2008.

[2] Y. Wu, R. Dimakis, and K. Ramchandran, “Deterministic regenerating
codes for distributed storage,” in Allerton Conf. Control, Comput. Com-
mun., Sep. 2007, pp. 242–249.

[3] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[4] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix
construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239,
Aug. 2011.

[5] H. Hou, K. Shum, M. Chen, and H. Li, “BASIC regenerating code:
Binary addition and shift for exact repair,” in IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 1621–1625.

[6] H. Hou, K. Shum, and H. Li, “Construction of exact-BASIC codes for
distributed storage systems at the MSR point,” in IEEE Int. Conf. Big
Data, Oct. 2013, pp. 33–38.

[7] X. Huang, H. Li, T. Zhou, H. Guo, H. Hou, H. Zhang, and K. Lei,
“Minimum storage BASIC codes: A system perspective,” in IEEE Int.
Conf. Big Data, Oct. 2013, pp. 39–43.

[8] C. Sung and X. Gong, “A ZigZag-decodable code with the MDS property
for distributed storage systems,” in IEEE Int. Symp. Inf. Theory, Jul. 2013,
pp. 341–345.

[9] X. Fu, Z. Xiao, and S. Yang, “Overhead-free in-place recovery scheme
for XOR-based storage codes,” in IEEE Int. Conf. Trust, Security and
Privacy in Computing and Communications, Sep. 2014, pp. 552–557.

858

