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Decoding and Repair Schemes for
Shift-XOR Regenerating Codes
Ximing Fu , Shenghao Yang , Member, IEEE, and Zhiqing Xiao

Abstract— Decoding and repair schemes are proposed for
shift-exclusive-or (shift-XOR) product-matrix (PM) regenerating
codes, which outperform the existing schemes in terms of both
communication and computation costs. In particular, for the
shift-XOR minimum bandwidth regenerating (MBR) codes, our
decoding and repair schemes have the optimal transmission
bandwidth and can be implemented in-place without extra
storage space for intermediate XOR results. Technically, our
schemes involve an in-place algorithm for solving a system of
shift-XOR equations, called shift-XOR elimination, which does
not have the bandwidth overhead generated by shift operations
as in the previous zigzag algorithm and has lower computation
complexities compared with the zigzag algorithm. The decoding
and repair of shift-XOR MBR/MSR codes are decomposed into
a sequence of systems of shift-XOR equations, and hence can be
solved by a sequence of calls to the shift-XOR elimination. As the
decompositions of the decoding and repair depend only on the
PM construction, but not the specific shift and XOR operations,
our decoding and repair schemes can be extended to other
MBR/MSR codes using the PM construction. Due to its funda-
mental role, the shift-XOR elimination is of independent interest.

Index Terms— Regenerating codes, shift-XOR regenerating
codes, product-matrix construction, decoding, repair.

I. INTRODUCTION

D ISTRIBUTED storage systems with potential node fail-
ures usually use redundancy to ensure the reliability of

the stored data. Compared with repetition, erasure coding is
a more efficient approach to introduce redundancy. Using an
[n, k] maximum-distance separable (MDS) erasure code, a data
file of kL bits is divided into k sequences, each of L bits.
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The k sequences are encoded into n coded sequences and
stored in n nodes, each storing one coded sequence. A decoder
can decode the data file from any k out of the n coded
sequences. An [n, k] MDS erasure code can tolerate at most
n− k node failures. Reed-Solomon codes [1] are widely used
MDS erasure codes, where the encoding and decoding oper-
ations are over finite fields, and have high computation costs.

Towards low complexity codes, exclusive-or (XOR) and
cyclic-shift operations have been employed to replace finite-
field operations. One family of such MDS storage codes
includes EVENODD codes [2] and RDP codes [3] for tol-
erating double node failures, and their extensions [4]–[6] for
tolerating triple or more node failures. These codes share
a common cyclic-shift Vandermonde generator matrix and
the decoding complexity of these codes has been improved
by LU factorization of Vandermonde matrix [7]. Another
family of MDS storage codes using XOR and cyclic-shift
is based on Cauchy generator matrices, including Cauchy
Reed-Solomon [8], [9] and Rabin-like codes [10], where the
decoding method is improved in [11].

In this article, we focus on a class of storage codes based
on (non-cyclic) shift and XOR operations, called shift-XOR
codes. Sung and Gong [12] presented a class of storage codes
for any valid pair [n, k] using shift and XOR operations,
where the generator matrix satisfies the increasing difference
property. Using an [n, k] shift-XOR storage code, the kL bits
of the data file can be decoded from any k out of the n coded
sequences using the zigzag decoding algorithm [12]. Due to
shift operations, the coded sequences are usually longer than
L bits so that the shift-XOR storage codes are not strictly
MDS, where the extra bits are called the storage overhead.
An [n, k] shift-XOR storage code is asymptotic MDS when L
is large. Moreover, the total number of bits retrieved by the
zigzag decoder is more than kL bits, where the extra bits are
called the (decoding) bandwidth overhead.

Shift-XOR codes have attracted more research interests
recently due to the potential low encoding/decoding computa-
tion costs. The shift-XOR storage codes with zigzag decoding
have lower encoding and decoding complexities than Cauchy
Reed-Solomon codes in a wide range of coding parame-
ters [13]. A fountain code based on shift and XOR outperforms
Raptor code in terms of the transmission overhead [14].
Efficient repair schemes for shift-XOR storage codes have
been studied in [15]. Moreover, shift and XOR operations can
also be used to construct network codes [16] and regenerating
codes [17], [18].
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TABLE I

COMPARISON OF THE ALGORITHMS FOR DECODING A SHIFT-XOR STORAGE CODE IN TERMS OF BANDWIDTH OVERHEAD, DECODING AUXILIARY
SPACE, AND DECODING COMPLEXITIES. HERE L IS THE MESSAGE SEQUENCE LENGTH, AND k IS THE NUMBER OF

MESSAGE SEQUENCES. A VANDERMONDE GENERATOR MATRIX IS ASSUMED

For distributed storage system, it is also worthwhile to
consider the repair of failed nodes. Dimakis et al. formulated
regenerating codes to address this issue [19]. In an [n, k, d]
regenerating code, a data file of BL bits is divided into B
sequences, each containing L bits. The sequences are encoded
into nα sequences each of L bits and distributed to n storage
nodes, each storing α sequences of L bits. The data file can
be decoded from any k storage nodes, and a failed node
can be repaired from any other d surviving nodes. There are
two kinds of repair [19]: exact repair and functional repair.
In exact repair, the sequences stored in the failed node can
be exactly reconstructed in the new node. In functional repair,
the sequences reconstructed in the new node may be different
from those in the failed node as long as the new node and the
other nodes form an [n, k, d] regenerating code.

The tradeoff between the storage in a node and the repair
bandwidth is characterized in [19]. Two classes of codes that
achieve the optimal storage-repair-bandwidth tradeoff are of
particular interests, i.e., the minimum bandwidth regenerat-
ing (MBR) codes and minimum storage regenerating (MSR)
codes. Rashmi et al. [20] proposed product-matrix (PM) con-
structions of MBR codes for all valid tuples [n, k, d] and MSR
codes for d ≥ 2k−2 with exact repair algorithms. In [20], PM
MSR codes with d > 2k−2 are constructed based on the con-
struction of the d = 2k− 2 case. Two unified constructions of
MSR codes for d ≥ 2k−2 were proposed in [21], [22]. Based
on special parameterized codes such as determinant codes with
k = d [23], Cascade codes were proposed to achieve the
MSR tradeoff point with arbitrary feasible combinations of
n, k, d [24]. Some MDS codes with sub-packetization were
proposed to construct MSR codes [25]–[27].

The PM MBR/MSR codes require matrix operations over
finite fields for encoding, decoding and repair, which have the
high computation cost as Reed-Solomon codes. To achieve
lower complexity, Hou et al. [17] proposed the regenerating
codes using shift and XOR operations based on the PM con-
struction. The shift-XOR MBR/MSR codes have the storage
overhead and the decoding/repair bandwidth overhead. For
example, for the shift-XOR MBR codes, extra 1

2k(k − 1)
sequences are retrieved for decoding, where the sequence
length is at least L. Hou et al. [28] proposed another class
of regenerating codes using cyclic-shift and XOR based
on the PM construction, called BASIC codes, and demon-
strated the lower computation costs than the finite-field PM
regenerating codes. The BASIC MBR codes have the simi-
lar decoding bandwidth issue as the shift-XOR regenerating
codes.

In [17], a general sufficient condition is provided such that
a system of shift-XOR equations is uniquely solvable, which
induces an adjoint matrix based approach to solve a system
of shift-XOR equations. However, the adjoint matrix based
approach has a high computation cost so that the decoding and
repair computation costs of the shift-XOR regenerating codes
in [17] are higher than those of the BASIC codes in [28] (see
the comparison in Table II). In this article, we will show that
it is possible to reduce the decoding/repair complexities of the
shift-XOR regenerating codes to be better than or similar to
those of BASIC codes.

A. Our Contributions

In this article, we first study solving a system of shift-
XOR equations, where the generator matrix satisfies a refined
version of the increasing difference property (see Section II).
The refined increasing difference (RID) property relaxes the
original one in [12] so that the storage overheads can be
smaller. The RID property is satisfied by, for example, Vander-
monde matrices. We propose an algorithm, called shift-XOR
elimination, for solving such a system of shift-XOR equations
(see Section III). Our algorithm has the following properties:

• Bandwidth overhead free: using the shift-XOR elimina-
tion to decode a shift-XOR storage code, only subse-
quences stored in a storage node are needed, and the
number of bits retrieved from the storage nodes is equal
to the number of bits to decode. In other words, the band-
width costs of the shift-XOR elimination is optimal.

• Lower computational space and time complexities: the
shift-XOR elimination has a smaller number of XOR
operations and smaller auxiliary space compared with the
zigzag algorithm. The number of XOR operations used by
the shift-XOR elimination is the same as the number of
XOR operations used to generate the input subsequences
from the message sequences. The shift-XOR elimination
only needs a constant number of auxiliary variables,
and can be implemented in-place: the results of the
intermediate XOR operations and the output bits are all
stored at the same storage space of the input binary
sequences. In other words, the algorithm uses an auxiliary
space of O(1) integers per kL bits to solve, and hence
has an asymptotically optimal space cost as kL is large.

In Table I, the shift-XOR elimination and the zigzag algorithm
are compared for decoding a shift-XOR storage code. The
shift-XOR elimination can be used in other shift-XOR codes,
e.g., [14], [15]. In this article, we focus on its application in
regenerating codes.
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TABLE II

COMPARISON AMONG DECODING AND REPAIR SCHEMES OF (CYCLIC-)SHIFT-XOR MBR/MSR CODES. HERE B IS THE NUMBER OF MESSAGE
SEQUENCES, L IS THE MESSAGE SEQUENCE LENGTH, k IS THE NUMBER OF NODES FOR DECODING, n IS THE NUMBER OF STORAGE

NODES, d IS THE NUMBER OF HELPER NODES FOR REPAIR, AND i IS THE NODE TO REPAIR. FOR MSR
CODES, d = 2k − 2. A VANDERMONDE GENERATOR MATRIX IS ASSUMED

In Section IV and V, we study decoding and repair of
the shift-XOR PM regenerating codes proposed in [17].
Our decoding/repair schemes transform the decoding/repair
problem to a sequence of subproblems of shift-XOR equa-
tions, which can be solved using the shift-XOR elimination.
Benefit from the advantages of the shift-XOR elimination, our
schemes in general have lower computation and bandwidth
costs than those in [17] (see Table II).

In particular, for the shift-XOR MBR codes, our decoding
and repair schemes retrieve the same number of bits as
the sequences to decode or repair. The decoding and repair
schemes can be implemented in-place with only O(1) integer
auxiliary variables, but without any auxiliary variables to
store the intermediate XOR results. Moreover, for decoding,
the number of XOR operations is the same as the number
of XOR operations for generating the input subsequences
from the message sequences. For the shift-XOR MSR codes,
our decoding and repair schemes have the same bandwidth
cost, smaller auxiliary space for intermediate XOR results,
and lower order of the number of XOR operations than
those of [17].

With our decoding and repair schemes, shift-XOR regener-
ating codes can have better or similar performance compared
with the BASIC codes [28], which use cyclic-shift and XOR.
In particular, for MBR decoding and repair and MSR repair,
our schemes have lower auxiliary spaces; for MBR decoding,
our scheme has a smaller number of XOR operations. When
L is sufficiently larger than nd, for MBR repair and MSR
decoding and repair, our schemes have a similar or smaller
number of XOR operations. See the comparison in Table II.

In Section VI, we discuss how to extend our decoding
and repair schemes to some other MBR/MSR codes based
on the PM construction, so that these codes can gain certain
advantages we have for shift-XOR codes. For codes based on
the PM construction in [20], [28], the decoding and repair
schemes are the same except that the shift-XOR elimination
is replaced by certain sub-processes for finite fields and cyclic-
shift respectively.

II. SHIFT-XOR STORAGE CODES

In this section, we formulate shift-XOR storage codes
[12], [17] after introducing some notations.

A. Notations

A range of integers from i to j is denoted by i : j. When
i > j, i : j is the empty set. A (binary) sequence is denoted by
a bold lowercase letter, e.g., a. The i-th entry of a sequence a
is denoted by a[i]. The subsequence of a from the i-th entry
to the j-th entry is denoted by a[i : j].

For a sequence a of L bits and a natural number t, the shift
operator zt pads t zeros in front of a, so that zta has L + t
bits and

�
zta

�
[l] =

�
0, 1 ≤ l ≤ t,
a [l − t] , t < l ≤ L+ t.

We use the convention that a[l] = 0 for l /∈ 1 : L, with which
we can write

(zta)[l] = a[l − t], l = 1, . . . , L+ t.

Let a and a� be two sequences of length L and L�,
respectively. The addition of a and a�, denoted by a+a�, is a
sequence of max{L,L�} bits obtained by bit-wise exclusive-or
(XOR), i.e., for l ∈ 1 : max{L,L�},

(a + a�) [l] = a [l]⊕ a� [l] ,

where we also use the convention that a[l] = 0 for l > L and
a�[l] = 0 for l > L�.

B. General Shift-XOR Storage Codes

We describe a general shift-XOR storage code and discuss
special instances in the next subsection. The code has parame-
ters B, L, d, n and α, which are positive integers. Consider
a storage system of n storage nodes employing a shift-XOR
storage code. A message is formed by B binary sequences,
each of L bits. These B message sequences are organized
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as a d × α message matrix M = (mi,j) in certain way
to be described subsequently, where two entries may share
the same message sequence, and certain entries may be the
all-zero sequences. The generator matrix used for encoding
the message is an n × d matrix Ψ = (zti,j ), where ti,j
are nonnegative integers to be explained further soon. For
1 ≤ i ≤ n, 1 ≤ j ≤ α, let

yi,j =
d�

u=1

zti,umu,j,

called the coded sequence. Denote Y = (yi,j) as the n × α
coded matrix of sequences yi,j , which can be written in the
matrix form

Y = ΨM. (1)

The α sequences in the i-th row of Y are stored at the
i-th node (also called node i) of the storage system.

Definition 1 (Refined Increasing Difference (RID) Property):
Matrix Ψ = (zti,j )1≤i≤n,1≤j≤d is said to satisfy the refined
increasing difference (RID) property if the following condi-
tions hold: For any i, i�, j, and j� such that i < i� and j < j�,

0 ≤ ti,j� − ti,j < ti�,j� − ti�,j ,
where equality in the first inequality holds only when i = 1.
We also say the numbers ti,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d satisfy
the RID property when they satisfy the above inequalities.

To guarantee certain efficient decoding algorithms, in this
article, we require the generator matrix Ψ of a shift-XOR
code satisfying the RID property. Different from the increasing
difference property in [12], the RID property allows t1,j� −
t1,j = 0 such that less storage at each node is required.
Suppose α = 1 and B = d, i.e., the d entries of M are
independent message sequences. The shift-XOR storage codes
of this case have been studied in [12], and the zigzag algorithm
can decode the d message sequences from any d rows of Y.

Due to shift operations, the length of a coded sequence can
be more than L bits. In particular, the length of yi,j is L+ti,d.
So the total number of bits stored at node i is α(L + ti,d).
The extra αti,d bits stored at node i using a shift-XOR storage
code is called the storage overhead. Under the constraint of
the RID property, it can be argued that the generator matrix
minimizing the storage overhead is [29]

Ψ = (z(i−1)(j−1)),

which is a Vandermonde matrix. In our analysis, we suppose
ti,j = O(nd), which is feasible as we have a choice of ti,j =
(i− 1)(j − 1) < nd.

C. Shift-XOR Regenerating Codes

We discuss two classes of shift-XOR product-matrix (PM)
regenerating codes [17]. The two constructions of the message
matrix M are the same as those of the (finite-field) PM
MBR and MSR codes [20]. According to the storage overhead
discussed in the preceding section, these codes achieve the
MBR/MSR tradeoff asymptotically when L → ∞, so the
constructed codes are called shift-XOR MBR codes and shift-
XOR MSR codes, respectively.

In contrast, regenerating codes using cyclic-shift-and-XOR
operations [28] and finite-field operations [20] do not have
storage overhead. Though with the storage overhead, the shift-
XOR codes have the potential of low encoding/decoding
complexity, to be demonstrated by the schemes of this article.

1) Shift-XOR MBR Codes: Fix an integer k with k ≤ d.
Consider α = d and

B =
1
2
(k + 1)k + k(d− k). (2)

The message matrix M is of the form

M =
�

S T
T� O

�
, (3)

where S is a k × k symmetric matrix of the first 1
2 (k + 1) k

message sequences, T is a k×(d− k) matrix of the remaining
k (d− k) message sequences, O is a (d− k)×(d− k) matrix
of the zero sequence 0, and T� is the transpose of T. By (2),
all the B message sequences are used in M.

The shift-XOR MBR code has the coded sequences Y =
ΨM, where Ψ = (zti,j ) is an n×d matrix satisfying the RID
property. A shift-XOR MBR code has the parameters n, k, d
and L, and is usually referred to as an [n, k, d] code.

Example 1 ([6,3,4] Shift-XOR MBR Code): For a shift-XOR
MBR code with n = 6, k = 3, d = 4, the message matrix is
of the form

M =

⎡
⎢⎢⎣
x1 x2 x3 x7

x2 x4 x5 x8

x3 x5 x6 x9

x7 x8 x9 0

⎤
⎥⎥⎦ ,

where xi is a binary sequence of L bits. Using the
Vandermonde generator matrix

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 z z2 z3

1 z2 z4 z6

1 z3 z6 z9

1 z4 z8 z12

1 z5 z10 z15

⎤
⎥⎥⎥⎥⎥⎥⎦
,

the coded sequences stored at node i (1 ≤ i ≤ 6) are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi,1 =x1 + zi−1x2 + z2(i−1)x3 + z3(i−1)x7,

yi,2 =x2 + zi−1x4 + z2(i−1)x5 + z3(i−1)x8,

yi,3 =x3 + zi−1x5 + z2(i−1)x6 + z3(i−1)x9,

yi,4 =x7 + zi−1x8 + z2(i−1)x9.

2) Shift-XOR MSR Codes: Here we only discuss shift-XOR
MSR codes with d = 2k − 2 and α = k − 1. Codes with
d ≥ 2k−1 can be constructed using the method in [20] based
on the codes with d = 2k− 2 and α = k − 1. Let B = kα =
(α+ 1)α. The message matrix M is of the form

M =
�
S
T

�
, (4)

where S is an α×α symmetric matrix of the first 1
2α (α+ 1)

message sequences, and T is another α×α symmetric matrix
of the remaining 1

2α (α+ 1) message sequences.
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The generator matrix Ψ is of the form

Ψ =
�
Φ ΛΦ

�
, (5)

where Φ = (zti,j ) is an n×α matrix satisfying the RID prop-
erty, and Λ is an n× n diagonal matrix with diagonal entries
zλ1 , zλ2 , . . . , zλn such that Ψ satisfies the RID property. When
Φ =

�
z(i−1)(j−1)

�
and λi = (i − 1)α, Ψ is a Vandermonde

matrix, for which the storage overheads are minimal as we
have discussed.

The shift-XOR MSR code described above has the coded
sequences Y = ΨM, and is usually referred to as an [n, k, d]
code.

Example 2 ([6,3,4] Shift-XOR MSR Code): For a shift-XOR
MSR code with n = 6, k = 3, d = 4 and α = k − 1 = 2,
the message matrix is

M =

⎡
⎢⎢⎣
x1 x2

x2 x3

x4 x5

x5 x6

⎤
⎥⎥⎦ ,

where xi is a binary sequence of L bits. Let

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
1 z
1 z2

1 z3

1 z4

1 z5

⎤
⎥⎥⎥⎥⎥⎥⎦
.

and Λ = diag
�
1, z2, z4, z6, z8, z10

�
. Then the generator

matrix Ψ is

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 z z2 z3

1 z2 z4 z6

1 z3 z6 z9

1 z4 z8 z12

1 z5 z10 z15

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The coded sequences stored at node i (1 ≤ i ≤ 6) are�
yi,1 =x1 + zi−1x2 + z2(i−1)x4 + z3(i−1)x5,

yi,2 =x2 + zi−1x3 + z2(i−1)x5 + z3(i−1)x6.

III. SOLVING A SYSTEM OF SHIFT-XOR EQUATIONS

Before introducing the decoding and repair schemes of
the shift-XOR regenerating codes, we give an algorithm for
solving a system of shift-XOR equations, called shift-XOR
elimination. This algorithm will be used as a sub-process
of our subsequent decoding and repair schemes, and is of
independent interest due to its fundamental role.

A k × k system of shift-XOR equations is given by⎡
⎢⎢⎢⎣
y1

y2

...
yk

⎤
⎥⎥⎥⎦ = Ψ

⎡
⎢⎢⎢⎣
x1

x2

...
xk

⎤
⎥⎥⎥⎦ , (6)

where x1,x2, . . . ,xk are binary sequences of L bits, and
matrix Ψ = (zti,j ) satisfies the RID property given in
Definition 1. The problem of solving a system of shift-XOR
equations (6) is to calculate xi, i = 1, . . . , k for given yi,
i = 1, . . . , k and Ψ.

A. Zigzag Algorithm

One approach to solve the system is the zigzag algo-
rithm [12], which performs successive cancellation. We use
an example to illustrate the idea of the zigzag algorithm.

Example 3: Consider the 3× 3 system⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣1 z z2

1 z2 z4

1 z3 z6

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ . (7)

Table III illustrates how the bits in yi are aligned with bits
in x1, x2 and x3. We see that x1[1] = yi[1], for i = 1, 2, 3,
and hence x1[1] is solvable. Next, we see that x1[2] = yi[2],
for i = 2, 3 and hence x1[2] is solvable. Substituting x1[2]
back into y1, we further obtain x2[1] = y1[2] − x1[2]. This
process can be repeated to solve all the bits in x1, x2 and x3:
in every iteration, a solvable bit is found and is substituted
back to all the equations it involves in. When there are more
than one solvable bits in an iteration, one of them is chosen
for substitution.

The zigzag algorithm in [12] implements the above idea to
solve any k × k system of shift-XOR equations as defined
in (6). The zigzag algorithm, however, is not optimal in
several aspects. First, the zigzag algorithm needs all the
kL +

�k
i=1 ti,k bits of y1,y2, . . . ,yk to solve the kL bits

of x1,x2, . . . ,xk. The extra
�k

i=1 ti,k bits consumed by the
algorithm is called the communication overhead or bandwidth
overhead. The ideal case is to have zero bandwidth overhead,
same as solving a full-rank k × k system of linear equations
over a finite field.

Second, the space and time computation complexities of
the zigzag algorithm have room to improve. The zigzag
algorithm [12] runs in kL iterations to solve all the kL bits.
In each iteration, a solvable bit is found to back substitute into
all the related equations. In [12], two approaches for searching
the solvable bit are discussed. The first approach takes O(k2)
comparisons to find a solvable bit and results in totally O(k3L)
time complexity. To reduce the time complexity, the second
approach uses a pre-calculated array of O(kL) integers to
assist the searching process. Searching and updating the array
takes O(k) integer operations in each iteration, so that the time
complexity is O(k2L). In addition to the input and output
sequences, the second approach requires O(kL) auxiliary
space to store the integer array. Without otherwise specified,
we refer to the second approach as the zigzag algorithm.

B. Shift-XOR Elimination

Here we propose an algorithm to solve systems of shift-
XOR equations, called shift-XOR elimination, which improves
the zigzag algorithm in terms of both bandwidth overhead
and computation complexities. First, only a subsequence of
L bits of yi (i = 1, . . . , k) is used so that the shift-XOR
elimination has no bandwidth overhead. Second, the order of
the bits to solve follows a regular pattern so that the shift-
XOR elimination has lower computation time and space costs
than the zigzag algorithm. We use an example to illustrate our
algorithm.
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TABLE III

THE THREE TABLES ILLUSTRATE HOW y1,y2,y3 ARE FORMED BY x1 , x2 AND x3 . FOR NUMBER l IN THE ROW OF yi , LET lj BE THE NUMBER IN THE
SAME COLUMN OF l AND IN THE ROW OF xj . THEN THE TABLE TELLS THAT yi[l] = x1[l1] + x2[l2] + x3[l3]. FOR EXAMPLE, THE 2ND, 3RD

AND 4TH COLUMNS OF TABLE IIIa MEAN y1[1] = x1[1], y1[2] = x1[2] + x2[1] AND y1[3] = x1[3] + x2[2] + x3[1], RESPECTIVELY

Example 4: Consider the system in (7). As illustrated
in Table III, y1[1], y2[1] and y3[1] are all equal to x1[1] and
hence one of them is sufficient for solving x1[1] and other
two are redundant. Similarly, y2[2] and y3[2] are the same,
and one of them is redundant. Define subsequences

x̂1 = y3[1 : L],
x̂2 = y2[3 : (L+ 2)],
x̂3 = y1[3 : (L+ 2)].

Table IV illustrates how x̂i is formed by x1,x2,x3.
In particular, for l ∈ 1 : L,

x̂1[l] = x1[l] + x2[l− 3] + x3[l − 6],
x̂2[l] = x2[l] + x1[l+ 2] + x3[l − 2],
x̂3[l] = x3[l] + x1[l+ 2] + x2[l + 1].

We see that x̂i involves all the bits in xi.
Let’s illustrate how to solve the system using x̂i, i =

1, 2, 3. The system is solved in multiple iterations indexed by
s = 1, 2, . . ., which can be further separated into three phases:

1) For each iteration s = 1, 2, one bit in x1 is solved.
2) For the iteration s = 3, one bit is solved in x1 and one

bit is solved in x2 sequentially.
3) For each iteration s ≥ 4, one bit is solved from each

of x1,x2 and x3 sequentially. (When l > L, xi[l] is
supposed to be solvable.)

Here, a bit is solved implies that it is also back substituted
into the equations it involves. Table IV illustrates this order
of bit solving. The first two iterations form the first phase,
where x1[1] and x1[2] are solved. The third iteration forms
the second phase, where x1[3] is solved first and then x2[1]
is solved by substituting x1[3]. Other iterations form the third
phase. At iteration 4, for example, x1[4] is first solved by
substituting x2[1]; x2[2] is then solved by substituting x1[4];
last, x3[1] is solved by substituting x1[3] and x2[2].

TABLE IV

SOLVING SYSTEM (7) BY THE SHIFT-XOR ELIMINATION FOR THE FIRST

10 ITERATIONS. THE FIRST ROW GIVES THE THREE PHASES OF THE
ITERATIONS, AND THE SECOND ROW GIVES THE ITERATIONS s. THE

THREE ROWS FOLLOWING x̂i (i = 1, 2, 3) SHOW HOW x̂i IS FORMED

BY xj , j = 1, 2, 3. FOR NUMBER l IN THE ROW OF x̂i , LET lj BE THE

NUMBER IN THE SAME COLUMN OF l AND IN THE ROW OF xj FOLLOWING
x̂i . THEN THE TABLE TELLS THAT x̂i[l] = x1[l1] + x2[l2] + x3[l3].
FOR EACH ITERATION, THE BITS DECODED ARE SPECIFIED BY THE

ENTRIES IN THE SAME COLUMN AND IN THE GRAY ROWS. FOR
EXAMPLE, FROM THE COLUMN INDEXED BY s = 4, THE THREE

GRAY ENTRIES ARE 4, 2 AND 1, WHERE THE ENTRY 4 IN THE

ROW OF x̂1 MEANS THAT x1[4] CAN BE SOLVED BY

SUBSTITUTING THE PREVIOUS SOLVED
BITS INTO x̂1[4]

Now we introduce the general shift-XOR elimination for
solving (6). The algorithm uses the subsequence x̂i, i =
1, . . . , k defined as

x̂i = yk+1−i [tk+1−i,i + (1 : L)] , (8)

where tk+1−i,i+(1 : L) denotes (tk+1−i,i+1) : (tk+1−i,i+L).
As x̂i has exactly L bits, our algorithm needs exactly kL
input bits and hence achieves zero bandwidth overhead.
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Substituting (6) into (8), we have for 1 ≤ l ≤ L,

x̂i[l] = xi[l] +
�
j �=i

xj [l − tk+1−i,j + tk+1−i,i], (9)

where we use the convention that xi[l] = 0 for l ≤ 0 and
l > L.

The shift-XOR elimination solves x̂i, i = 1, . . . , k as
follows. The algorithm runs in a number of iterations indexed
by s = 1, 2 . . ., which are partitioned into k phases. For
b = 1, 2, . . . , k, define

Lb =

�
tk−b,b+1 − tk−b,b, 1 ≤ b < k,

L, b = k,
(10)

and define L1:b =
�b

b�=1 Lb� . The b-th phase (b ∈ 1 : k) has
Lb iterations. The operations in each iteration are specified as
follows:

• For each iteration s in phase 1 (i.e., s ∈ 1 : L1), x1[s]
is solved (using x̂1[s]).

• For each iteration s in phase b = 2, . . . , k (i.e., s ∈
L1:(b−1) + (1 : Lb)), xi[s − L1:(i−1)] is solved (using
x̂i[s − L1:(i−1)] and the previously solved bits) sequen-
tially for i = 1, . . . , b.

In the above process, i) a bit is solved implies that it is also
back substituted into the equations it involves in; ii) for xi[l]
with l > L, xi[l] is supposed to be solvable as 0, and hence do
not need to be substituted; iii) the total number of iterations
is L1:k.

Algorithm 1 Shift-XOR Elimination With in-Place Implemen-
tation. After the Execution, the Value xi[l] Is Stored at the
Same Storage Space as x̂i[l]
Input: sequences x̂i, 1 ≤ i ≤ k.
Output: solved sequences xi, 1 ≤ i ≤ k.
1: Initialize s← 0
2: for b← 1 : k do
3: for Lb iterations do
4: s← s+ 1;
5: for i← 1 : b do
6: l ← s − L1:(i−1); (the value of xi[l] is stored at the

same place of x̂i[l])
7: for j ← 1, 2, . . . , i− 1, i+ 1, . . . , k do
8: if 0 < l+ tk+1−j,i − tk+1−j,j ≤ L then
9: x̂j [l + tk+1−j,i − tk+1−j,j]⊕ ← xi[l]; (in-place

back substitution)

A pseudocode of the shift-XOR elimination is given in
Algorithm 1, which also demonstrates an in-place implementa-
tion of the shift-XOR elimination. The loop started at Line 2
enumerates all the phases b = 1, . . . , k. The operations in
each iteration are given from Line 3 to 9: In Line 6, one
more bit is marked to be solved, and the following three
lines perform back substitution. For in-place implementation,
the back substitution result x̂v[l+ tk+1−v,i− tk+1−v,v]⊕xi[l]
is stored at the same place of x̂v[l + tk+1−v,i − tk+1−v,v].
After the execution of the algorithm, the value xi[l] is stored
at the same storage space as x̂i[l].

To prove the correctness of the shift-XOR elimination,
we only need to show that each bit chosen to solve during
the execution of the algorithm can be expressed as x̂i, i =
1, . . . , k and the previously solved bits. Theorem 1, proved in
Appendix, justifies the shift-XOR elimination.

Theorem 1: Consider a k×k system of shift-XOR equations
(y1 · · · yk)� = Ψ(x1 · · · xk)� with Ψ satisfying the RID
property. The shift-XOR elimination can successfully solve xi,
i = 1, . . . , k using

x̂i = yk+1−i [tk+1−i,i + (1 : L)] , i = 1, . . . , k.

We summarize the bandwidth and computation costs of the
shift-XOR elimination:

• First, the algorithm has no bandwidth overhead as the
number of input bits is the same as the number of bits to
solve. In contrast, the bandwidth overhead of the zigzag
algorithm has

�k
i=1 ti,k bits.

• Second, as the algorithm can be implemented in-place,
no extra storage space is required to store the intermediate
XOR results. The algorithm only needs a small constant
number (independent of k and L) of intermediate integer
variables. (The values ti,j , Lb and L1:b are constants
that included as a part of the program that implements
the algorithm.) Therefore, the shift-XOR elimination uses
O(1) auxiliary integer variables. In contrast, the zigzag
algorithm needs O(kL) auxiliary integer variables, and
kL bits to store the intermediate XOR results.

• Third, the number of XOR operations used by
Algorithm 1 is the same as the number of XOR oper-
ations used to generate x̂1, . . . , x̂k from x1, . . . ,xk , and
is less than k(k− 1)L. The number of integer operations
used in the algorithm (for calculating back substitution
positions) is O(k2L). Similarly, the zigzag algorithm
needs k(k + 1)L XOR operations and O(k2L) integer
operations.

To conclude this section, we remark that there are other
choices of the subsequences that can guarantee the solvability.
But different subsequences may result in different order of the
bits to solve, which we would not explore in this article. For
example, if we use yu[tu,u + (1 : L)], u = 1, . . . , k, each
sequence xi can be solved from the last bit to the first bit.

IV. DECODING AND REPAIR SCHEMES

OF SHIFT-XOR MBR CODES

In this section, we discuss the decoding and repair schemes
for the shift-XOR MBR codes described in Section II-C.1.
Our schemes decompose the decoding/repair problem into a
sequence of systems of shift-XOR equations, each of which
can be solved efficiently using the shift-XOR elimination
discussed in the last section.

Let m,n be positive integers, and let A = (ai,j) be an m×n
matrix. We define some notations to represent submatrices
of A. For two subsets I ⊂ {1, . . . , n} and J ⊂ {1, . . . ,m},
let AI (resp. AJ ) be the submatrix of A formed by all the
columns (resp. rows) with indices in I (resp. J). Following
these notations, AJ

I is the submatrix of A formed by the
entries on the rows in J and columns in I . When I = {i}
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(resp. J = {j}), we also write Ai (resp. Aj) for convenience.
These submatrix notations should not be confused with the
matrix entries (e.g., ai,j), which are specified case by case
before using.

A. Decoding Scheme of Shift-XOR MBR Codes

Consider an [n, k, d] shift-XOR MBR codes. According to
the encoding (1) with the symmetric matrix M = (mi,j)
in (3), we get

Y = Ψ
�

S T
T� O

�
, (11)

where Ψ = (zti,j ) is an n × d matrix satisfying the RID
property. We see that for 1 ≤ i ≤ j ≤ k, the (i, j) entry of the
symmetric matrix S is mi,j and for 1 ≤ i ≤ k, 1 ≤ j ≤ d−k,
the (i, j) entry of T is mi,j+k . Due to the symmetry of S,
there are totally B = 1

2 (k+1)k+k(d−k) message sequences
to decode. Substituting the entries mi,j into (11), the (i, j)
entry of Y is

yv,u[l] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�
j=1

mj,u[l − tv,j ]

+
d�

j=u+1

mu,j[l − tv,j ], 1 ≤ u ≤ k
k�

j=1

mj,u[l − tv,j ], k < u ≤ d

(12)

where 1 ≤ l ≤ L+ tv,d.
1) Decomposition of Decoding Problem: Our scheme

decodes the message matrix M by first decoding the k×(d−k)
submatrix T and then decoding the k × k symmetric subma-
trix S. For each j = 1, . . . , d − k, we have the system of
shift-XOR equations

Yj+k = Ψ1:kTj , (13)

where Ψ1:k satisfies the RID property. Using the shift-XOR
elimination, Tj can be decoded from any k rows of (13). The
d−k columns of T can be decoded one-by-one or in parallel.

After decoding T, we continue to decode the k columns of
S sequentially with the column indices in descending order.
Fix u with 1 ≤ u ≤ k. We have, according to (11),

Yu = Ψ1:kSu + Ψ(k+1):d(Tu)�

= Ψ1:uS1:u
u + Ψ(u+1):kS(u+1):k

u + Ψ(k+1):d(Tu)�.

Then we have

Yu−Ψ(u+1):kS(u+1):k
u −Ψ(k+1):d(Tu)� = Ψ1:uS1:u

u . (14)

As Ψ1:u satisfies the RID property, (14) can be viewed as
a system of shift-XOR equations generated by Ψ1:u of the
input S1:u

u . When u = k, Sk can be decoded using the shift-
XOR elimination on any k rows of Yu − Ψ(k+1):d(Tu)�.
When u < k, suppose that the columns of S with indices
larger than u have all been decoded. Then S1:u

u can be decoded
using the shift-XOR elimination on any u rows of (14), where

S(u+1):k
u =

�
Su

(u+1):k

��
have been decoded.

2) Decoding Scheme: Our decoding scheme is able to
decode the message sequences by retrieving data from any k
out of the n nodes. Now we give the details of our decoding
scheme, which consists of two stages: the transmission stage
and the decoding stage. In the transmission stage, k stor-
age nodes are chosen. Let the indices of the k nodes be
i1, i2, . . . , ik, where i1 > i2 > · · · > ik. For v ∈ 1 : k
and u ∈ v : d, define subsequence

m̂v,u = yiv ,u [tiv ,v + (1 : L)] , (15)

which is of L bits. For v ∈ 1 : k, node iv transmits the
subsequences m̂v,u, u = v, . . . , d to the decoder. Substituting
(12) into (15), we have for 1 ≤ l ≤ L,

m̂v,u[l] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mv,u[l] +
u�

j=1,j �=v

mj,u[l + tiv ,v − tiv ,j ]+

d�
j=u+1

mu,j[l + tiv ,v − tiv ,j ], 1 ≤ v ≤ u ≤ k,

mv,u[l] +
k�

j=1,j �=v

mj,u[l + tiv ,v − tiv ,j ],

1 ≤ v ≤ k, k < u ≤ d,
(16)

where we see that m̂v,u involves all the bits in mv,u.
The decoding stage consists of two steps. In the first step,

matrix T is decoded using m̂v,u, 1 ≤ v ≤ k, k + 1 ≤
u ≤ d. In the second step, matrix S is decoded using m̂v,u,
1 ≤ v ≤ u ≤ k. A pseudocode of the decoding scheme is
shown in Algorithm 2, which also demonstrates an in-place
implementation of the decoding algorithm.

Step 1: This step contains d − k iterations. For each
u ∈ (k + 1) : d, performing the shift-XOR
elimination on m̂1,u, m̂2,u, . . . , m̂k,u, we can decode
m1,u,m2,u, . . . ,mk,u (ref. Line 2 in Algorithm 2). For
in-place implementation, mv,u is stored at the same
storage place of storing m̂v,u. For any v with 1 ≤ v ≤ k,
mv,u is involved in generating m̂w,v, 1 ≤ w ≤ v as
in (16). So the value of mv,u is substituted in m̂w,v

(ref. Line 3–5 in Algorithm 2). After the substitution,
m̂w,v with 1 ≤ w ≤ v ≤ k is only related to mv�,u� ,
1 ≤ v� ≤ u� ≤ k.

Step 2: This step contains k−1 iterations. For iteration u from
k down to 2, performing the shift-XOR elimination of
m̂1,u, m̂2,u, . . . , m̂u,u to decode m1,u,m2,u, . . . ,mu,u

(ref. Line 7 in Algorithm 2). Since mv,u (1 ≤ v ≤ u−1)
is involved in generating the bits in m̂w,v (1 ≤ w ≤ v),
the sequence mv,u (1 ≤ v ≤ u − 1) is then substituted
into m̂w,v (1 ≤ w ≤ v), according to (16) (ref. Line 8–10
in Algorithm 2). After the substitution, m̂w,v (1 ≤ w ≤
v ≤ u−1) is only related to mv�,u� , 1 ≤ v� ≤ u� ≤ u−1.

After Step 2, mv,u (1 ≤ v ≤ k, v ≤ u ≤ d) is decoded and
stored at the same storage place as m̂v,u.

Example 5: Consider the [6, 3, 4] shift-XOR MBR code in
Example 1. Suppose the transmission stage chooses nodes 1, 3
and 4, i.e., i1 = 4, i2 = 3, and i3 = 1. Node i1 = 4 transmits
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Algorithm 2 Decoding Algorithm for Shift-XOR MBR Codes
With in-Place Implementation. After the Execution, the Output
Value mv,u[l] Is Stored at the Same Storage Space as m̂v,u[l]
Input: coded sequences m̂v,u, 1 ≤ v ≤ k, v ≤ u ≤ d, and

corresponding node indices ij (1 ≤ j ≤ k), which satisfies
i1 > i2 > · · · > ik.

Output: decoded message sequences mv,u, 1 ≤ v ≤ k, v ≤
u ≤ d.
(Step 1: Decode T)

1: for u← d down to k + 1 do
2: Decode (mv,u, 1 ≤ v ≤ k) by executing Algorithm 1 on

m̂1,u, m̂2,u, . . . , m̂k,u with indices i1, i2, . . . , ik.
3: for v ← 1 : k do
4: for w ← 1 : v do
5: m̂w,v [(tiw ,u − tiw ,w + 1) : L]⊕ ←

mv,u [1 : (L − tiw,u + tiw,w)] . (in-place back
substitution)

(Step 2: Decode S)
6: for u← k down to 2 do
7: Decode (m1,u,m2,u, . . . ,mu,u) executing Algorithm 1

on m̂1,u, m̂2,u, . . . , m̂u,u with indices i1, i2, . . . , iu.
8: for v ← 1 : (u− 1) do
9: for w ← 1 : v do

10: m̂w,v [(tiw ,u − tiw,w + 1) : L]⊕ ←
mv,u [1 : (L − tiw,u + tiw,w)] . (in-place back
substitution)

m̂1,i = y4,i[1 : L], i = 1, . . . , 4 to the decoder. Node i2 = 3
transmits m̂2,i = y3,i[3 : (L + 2)], i = 2, 3, 4 to the decoder.
Node i3 = 1 transmits m̂3,i = y1,i[1 : L], i = 3, 4 to the
decoder.

Since d = k + 1, Step 1 of Algorithm 2 has only one
iteration. According to (16), we have for 1 ≤ l ≤ L

m̂1,4[l] = m1,4[l] + m2,4[l − 3] + m3,4[l − 3],

m̂2,4[l] = m2,4[l] + m1,4[l + 2] + m3,4[l − 2],

m̂3,4[l] = m3,4[l] + m1,4[l] + m2,4[l].

Performing the shift-XOR elimination on m̂1,4, m̂2,4 and
m̂3,4 we obtain m1,4, m2,4 and m3,4. For 1 ≤ l ≤ L,

m̂1,1[l] = m1,1[l] + m1,2[l − 3] + m1,3[l − 6] + m1,4[l − 9],

m̂1,2[l] = m1,2[l] + m2,2[l − 3] + m2,3[l − 6] + m2,4[l − 9],

m̂1,3[l] = m1,3[l] + m2,3[l − 3] + m3,3[l − 6] + m3,4[l − 9],

m̂2,2[l] = m2,2[l] + m1,2[l + 2] + m2,3[l − 2] + m2,4[l − 4],

m̂2,3[l] = m2,3[l] + m1,3[l + 2] + m3,3[l − 2] + m3,4[l − 4],

m̂3,3[l] = m3,3[l] + m1,3[l] + m2,3[l] + m3,4[l].

The decoder further substitutes m1,4 into m̂1,1, substitutes
m2,4 into m̂1,2 and m̂2,2, and substitutes m3,4 into m̂1,3,
m̂2,3 and m̂3,3 correspondingly. We use the same notation to
denote the sequences after substitution.

Step 2 of Algorithm 2 has two iterations with u = 3
and u = 2 respectively. In the u = 3 iteration, we have

for 1 ≤ l ≤ L
m̂1,3[l] = m1,3[l] + m2,3[l − 3] + m3,3[l− 6],
m̂2,3[l] = m2,3[l] + m1,3[l + 2] + m3,3[l− 2],
m̂3,3[l] = m3,3[l] + m1,3[l] + m2,3[l],

which can be solved by shift-XOR elimination to obtain m1,3,
m2,3 and m3,3. Similarly, the decoder substitutes m1,3 into
m̂1,1, substitutes m2,3 into m̂1,2 and m̂2,2. In the u = 2
iteration, the shift-XOR elimination is performed on m̂1,2 and
m̂2,2 to decode m1,2 and m2,2. The decoder then substitutes
m1,2 into m̂1,1, which becomes m1,1.

3) Complexity Analysis: Time Complexity: In Step 1,
decoding each column of T costs k(k − 1)L XOR opera-
tions by the shift-XOR elimination (Line 2 in Algorithm 2).
Noting that in Line 5 of Algorithm 2, the sequences for back
substitution are shorter than L, and hence substituting each
column of T into other retrieved sequences takes less than
1
2k(k + 1)L XOR operations (Line 3 – 5 in Algorithm 2).
There are (d− k) iterations in this step, so the number of
XOR operations T1 required in Step 1 satisfies

T1 < (d− k)
�
k(k − 1) +

1
2
k(k + 1)

�
L

=
1
2

(d− k) (3k − 1) kL.

In Step 2, similarly, an iteration u ∈ 2 : k needs
u(u − 1)L XOR operations to execute Algorithm 1 and less
than 1

2u (u− 1)L XOR operations to substitute the decoded
sequences. Therefore, the number of XOR operations T2 in
the second step satisfies

T2 <

k�
u=2

�
u(u− 1)L+

1
2
u(u− 1)L

�

=
1
2
(k − 1)k(k + 1)L.

Therefore, the total number of XOR operations is

T1 + T2 <

��
3
2
d− k

�
k − 1

2
(d− k + 1)

�
kL.

So the time complexity is O(dk2L).
Space Complexity: Same as the shift-XOR elimination,

Algorithm 2 can be implemented in-place, so that the output
sequences take the same storage space as the input sequences.
No extra space is required to store the intermediate XOR
results. Only O(1) integer auxiliary variables are required
by Algorithm 2.

Bandwidth Overhead: Our algorithm consumes exactly
BL bits from the storage nodes to decode the BL bits of
the message sequences. Therefore, our decoding algorithm has
zero bandwidth overhead.

B. Repair Scheme for Shift-XOR MBR Codes

This section introduces the repair scheme for the [n, k, d]
shift-XOR MBR code described in Section II-C.1. Suppose
that node i fails. Our repair scheme generates a new storage
node that stores d sequences

Yi = ΨiM = [yi,1, . . . ,yi,d], (17)
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same as the d sequences stored at node i. Note that a sequence
in Yi has L+ti,d bits. Recall that each storage node j ∈ 1 : n
stores the sequences ΨjM, and hence can compute locally the
sequence

rj = ΨjM
�
Ψi

��
= Ψj(ΨiM)� = Ψj(Yi)�, (18)

which is a shift-XOR equation of Yi. Therefore, using the
shift-XOR elimination, Yi can be decoded from rj of any d
nodes j.

Specifically, the repair scheme includes two stages: the
transmission stage and the decoding stage. In the transmission
stage, d helper nodes are chosen to repair node i, which have
the indices i1, i2, . . . , id where i1 > i2 > · · · > id. Each node
iv (1 ≤ v ≤ d) transmits a subsequence of riv (defined in (18))

m̂v = riv [(1 + tiv ,v) : (L+ ti,d + tiv ,v)] (19)

to the new node i for repairing. Note that m̂v has exactly
the same number of bits as the sequences to repair. In the
decoding stage, the new node i has received sequences m̂v,
v = 1, . . . , d, and performs the shift-XOR elimination to
decode Yi.

Example 6: Consider again [6, 3, 4] MBR code in Exam-
ple 1, where the message matrix and generator matrix can
be found. This example will show the transmission stage and
decoding stage to repair node 3 by connecting helper nodes
1, 2, 4 and 5, i.e., i1 = 5, i2 = 4, i3 = 2, i4 = 1. So

r5 = y3,1 + z4y3,2 + z8y3,3 + z12y3,4,

r4 = y3,1 + z3y3,2 + z6y3,3 + z9y3,4,

r2 = y3,1 + z1y3,2 + z2y3,3 + z3y3,4,

r1 = y3,1 + y3,2 + y3,3 + y3,4.

Then the sequences transmitted to the new node 3 are

m̂1 = r5[1 : (L + 6)]
m̂2 = r4[4 : (L + 9)]
m̂3 = r2[3 : (L + 8)]
m̂4 = r1.

Applying Algorithm 1 on m̂1, m̂2, m̂3 and m̂4, we repair
y3,1, y3,2, y3,3 and y3,4 at the new node 3.

Time Complexity: The repair computation cost involves
two parts: The first part is the computation at the d helper
nodes, and the second part is the computation at the repaired
node. At each helper node, (d−1) (L+ ti,d) XOR operations
are used. So the total number of XOR operations at all the
helper nodes is d (d− 1) (L + ti,d). The number of XOR
operations of the second part is d(d− 1) (L+ ti,d), according
to the analysis of Algorithm 1. Totally, the number of XOR
operations of MBR codes repair is 2d(d − 1)(L + ti,d) =
2d(d− 1)L+O(nd3).

Space Complexity: In the repaired node, one shift-XOR
elimination is performed and O(1) auxiliary integer variables
are required.

Bandwidth: Our algorithm consumes exactly L + ti,d bits
from d helper nodes to repair the d(L + ti,d) bits of node i,
and hence has zero bandwidth overhead.

V. DECODING AND REPAIR SCHEMES

OF SHIFT-XOR MSR CODES

In this section, we discuss the decoding and repair schemes
for the shift-XOR MSR codes described in Section II-C.2.
Similar to those of the shift-XOR MBR codes, our schemes
decompose the decoding/repair problem into a sequence of
systems of shift-XOR equations, each of which can be solved
efficiently using the shift-XOR elimination.

A. Decoding Scheme of Shift-XOR MSR Codes

Consider an [n, k, d] shift-XOR MSR code, where
d = 2k − 2 and α = k − 1. Substituting the message matrix
M in (4) and the generator matrix Ψ in (5) into the general
encoding formula (1), we obtain

Yi = ΦiS + zλiΦiT, (20)

which is the i-th row of Y stored at storage node i. Denote the
(v, u) entry of S and T as sv,u and tv,u, respectively. Due
to symmetry, the decoding problem is to solve the message
sequences sv,u, tv,u, 1 ≤ v ≤ u ≤ α, totally B = α(α+1) =
(k − 1)k sequences.

1) Decomposition of Decoding Problem: Suppose the
indices of the k nodes chosen for decoding are i1, i2, . . . , ik,
where i1 > i2 > · · · > ik, so that the decoder can retrieve
Yiu , u = 1, . . . , k. Denote for 1 ≤ u 
= v ≤ k,

cu,v = Yiu(Φiv )�, (21)
pu,v = ΦiuS(Φiv )�, (22)
qu,v = ΦiuT(Φiv )�. (23)

Here cu,v can be computed by the decoder using the sequences
it retrieved. Due to the symmetry of S and T, we have
pu,v = pv,u and qu,v = pv,u. Briefly, the decoding problem
is decomposed into the following two steps:

• First, pu,v , qu,v, 1 ≤ u < v ≤ k are solved using cu,v ,
1 ≤ u 
= v ≤ k.

• Second, S is solved using pu,v , 1 ≤ u < v ≤ k, and T
is solved using qu,v , 1 ≤ u < v ≤ k.

Let us elaborate these two steps.
Step 1: For 1 ≤ v < u ≤ k, we have the shift-XOR

equations (obtained by (20) – (23))�
cu,v

cv,u

�
=

�
pu,v + zλiu qu,v

pv,u + zλiv qv,u

�

=
�
pu,v + zλiu qu,v

pu,v + zλiv qu,v

�

=
�
1 zλiu

1 zλiv

� �
pu,v

qu,v

�
.

(24)

Due to the RID property of [Φ ΛΦ], we have λiutiu,1 −
tiu,a < λiv tiv ,1 − tiv ,a and tiu,a− tiu,1 < tiv ,a− tiv ,1, which
implies λiu 
= λiv . Hence, the shift-XOR elimination can be
performed on cu,v and cv,u to solve pu,v and qu,v, which
are of L + tiu,α + tiv ,α bits. According to the discussion in
Section III, only the subsequences

ĉu,v := cu,v[1 : (L+ tiu,α + tiv ,α)] (25)
ĉv,u := cv,u[λiv + (1 : (L+ tiu,α + tiv ,α))] (26)

are needed for the shift-XOR elimination.
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Step 2: Define an α× α matrix S̃ = (s̃v,u) as

S̃ =

⎡
⎢⎣
Φi1

...
Φiα

⎤
⎥⎦S. (27)

Due to the symmetry of S, (S̃v)� = S(Φiv )�. For each
v ∈ 1 : α, form the α × α system of shift-XOR equations
(by (22) and (27))⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,v

...
pv−1,v

pv+1,v

...
pk,v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi1

...
Φiv−1

Φiv+1

...
Φik

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(S̃v)�, (28)

so that (S̃v)� can be solved by performing the shift-XOR
elimination on the LHS of (28). By (27), we see the maximum
length of sequences in S̃v is L�

v = L+tiv ,α. So the shift-XOR
elimination only needs the subsequences

p̂u,v :=

�
pu,v[tiu,u + (1 : L�

v)], u = 1, . . . , v − 1
pu,v[tiu,u−1 + (1 : L�

v)], u = v + 1, . . . , k.

After solving S̃, we further solve the system of shift-XOR
equations (27), so that Su can be decoded by the shift-XOR
elimination on

ŝv,u := s̃v,u[tiv ,v + (1 : L)], v = 1, . . . , α.

The procedure for solving T is the same and hence is
omitted.

2) Decoding Scheme: Our decoding scheme is able to
decode the message sequences by retrieving data from any
k out of the n nodes. Now we give the details of our decod-
ing scheme, which consists of two stages: the transmission
stage and the decoding stage. In the transmission stage, k
storage nodes are chosen. Let the indices of the k nodes be
i1, i2, . . . , ik, where i1 > i2 > · · · > ik. For u ∈ 1 : k, node
iu transmits Yiu to the decoder.

The decoding stage includes the two steps described above,
with the pseudocode in Algorithm 3. The algorithm inputs
Yiu , u = 1, . . . , k (totally B sequences) and outputs the B
message sequences. But different from the decoding of shift-
XOR MBR codes, this algorithm needs extra storage space for
the intermediate XOR results.

In Step 1, the algorithm first calculates ĉu,v and ĉv,u, 1 ≤
u < v ≤ k. From (25) and (26), we see the length of ĉu,v

and ĉv,u is L + O(nd). To storage ĉu,v and ĉv,u, 1 ≤ u <
v ≤ k, a space of α(α + 1)(L + O(nd)) bits is needed. In
Line 4, the shift-XOR elimination is applied on ĉu,v and ĉv,u

to solve pu,v and qu,v for 1 ≤ v < u ≤ k. As the shift-
XOR elimination is in-place, pu,v and qu,v can take exactly
the same storage space as ĉu,v and ĉv,u for 1 ≤ v < u ≤ k,
respectively. Then another space of α(α − 1) sequences is
needed to store pu,v and qu,v , 1 ≤ u < v ≤ α. Therefore,
after Line 7, totally 2α2(L+O(nd)) bits space is needed.

In Step 2, from Line 8 to 9, the shift-XOR elimination
is applied on p̂u,v, u = 1, . . . , v − 1, v + 1, . . . , k to solve

Algorithm 3 Decoding Algorithm for Shift-XOR MSR Codes

Input: coded sequences Yiu , u = 1, . . . , k.
Output: message sequences su,v and tu,v , 1 ≤ u ≤ α, 1 ≤

v ≤ α.
(Step 1: Solve pv,u and qv,u)

1: Calculate ĉu,v and ĉv,u for 1 ≤ u < v ≤ k.
2: for u← 2 : k do
3: for v ← 1 : u− 1 do
4: Apply Algorithm 1 on ĉu,v and ĉv,u to solve pu,v and

qu,v .
5: if u < k then
6: pv,u ← pu,v .
7: qv,u ← qu,v .

(Step 2: Decode S and T)
8: for v ← 1 : α do
9: Apply Algorithm 1 on p̂u,v, u = 1, . . . , v−1, v+1, . . . , k

to solve S̃v.
10: for u← 1 : α do
11: Apply Algorithm 1 on ŝu,v, v = 1, . . . , α to solve Su.

(ŝu,v is a subsequence of the (u, v) entry of S̃)
12: Repeat Line 8 – 11 on q̂u,v instead of p̂u,v to solve T.

S̃v for v = 1, . . . , α. From Line 10 to 11, the shift-XOR
elimination is applied on ŝu,v, v = 1, 2, . . . , α to solve Su for
u = 1, . . . , α. Due to the in-place property of the shift-XOR
elimination, no additional space is needed.

Last, T is solved by repeating the above process on q̂u,v

instead of p̂u,v .
Example 7: Consider the example of [6, 3, 4] MSR code

in Example 2, where α = 2. Consider decoding from nodes
1, 3 and 4, i.e., i1 = 4, i2 = 3 and i3 = 1. The decoder
retrieves the sequences Y4 = [y4,1,y4,2], Y3 = [y3,1,y3,2]
and Y1 = [y1,1,y1,2], and obtains the shift-XOR equations

y4,1 = x1 + z3x2 + z6x4 + z9x5

y4,2 = x2 + z3x3 + z6x5 + z9x6

y3,1 = x1 + z2x2 + z4x4 + z6x5

y3,2 = x2 + z2x3 + z4x5 + z6x6

y1,1 = x1 + x2 + x4 + x5

y1,2 = x2 + x3 + x5 + x6.

The above system cannot be solved directly using the shift-
XOR elimination as it does not satisfy the RID property.
We apply Algorithm 3 to solve the system.

First, the decoder uses the above sequences to calculate ĉu,v

(1 ≤ u 
= v ≤ 3), where

ĉ1,2 =
�
Y4(Φ3)�

�
[1 : (L+ 5)] ,

ĉ1,3 =
�
Y4(Φ1)�

�
[1 : (L+ 3)] ,

ĉ2,1 = Y3(Φ4)�[5 : (L + 9)],

ĉ2,3 =
�
Y3(Φ1)�

�
[1 : (L+ 2)] ,

ĉ3,1 = Y1(Φ4)�[3 : (L + 5)],

ĉ3,2 = Y1(Φ3)�[3 : (L + 4)].
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By (24), we have the system of shift-XOR equations�
c2,1

c1,2

�
=

�
1 zλi2

1 zλi1

� �
p2,1

q2,1

�
.

Performing the shift-XOR elimination on ĉ2,1 and ĉ1,2,
we obtain p2,1 and q2,1. Similarly, we obtain p3,1 and q3,1

from ĉ1,3 and ĉ3,1, and obtain p3,2 and q3,2 from ĉ2,3 and
ĉ3,2. We further generate pv,u and qv,u for 1 ≤ v < u ≤ 3
by symmetry.

By (28), we can form two systems�
p2,1

p3,1

�
=

�
Φi2

Φi3

� �
s̃1,1

s̃1,2

�
,

and �
p1,2

p3,2

�
=

�
Φi1

Φi3

� �
s̃2,1

s̃2,2

�
,

solving of which give us s̃v,u, 1 ≤ v, u ≤ 2. Then by (27),
we have the system�

s̃1,1 s̃1,2

s̃2,1 s̃2,2

�
=

�
Φi1

Φi2

� �
x1 x2

x2 x3

�
.

Applying the shift-XOR elimination on ŝ1,1 and ŝ2,1,
we obtain x1 and x2. Applying the shift-XOR elimination
on ŝ1,2 and ŝ2,2, we obtain x2 and x3.

Executing the same process above using qu,v in place of
pu,v, we can solve x4,x5,x6.

3) Complexity Analysis: Time Complexity: The time com-
plexity of Algorithm 3 can be calculated based on the time
complexity of shift-XOR eliminations performed in the algo-
rithm. First, kα(α − 1)(L + O(nd)) = k(k − 1)(k − 2)(L +
O(nd)) XOR operations are needed for computing ĉu,v and
ĉv,u for 1 ≤ u < v ≤ k. Solving pu,v and qu,v for u =
2, . . . , k and v = 1, . . . , u− 1 costs α(α + 1)(L+O(nd)) =
k(k−1)(L+O(nd)) XOR operations. Then solving S and T
costs 4α2(α−1)(L+O(nd)) = 4(k−1)2(k−2)(L+O(nd))
XOR operations. Totally, the time complexity T for decoding
of MSR codes is

T = k (k − 1) (k − 2) (L+O(nd)) + k (k − 1)
×(L+O(nd)) + 4(k − 1)2(k − 2)(L+O(nd))

= (k − 1)2 (5k − 8)L+O(nk3d).

Space Complexity: In Algorithm 3, the 2α2 sequences
pu,v, pv,u take 2α2(L + O(nd)) bits storage, which is the
largest space cost of the algorithm during an execution. The
message sequences has α(α+1)L bits, so the auxiliary space
is α(α − 1)L+O(nd3) bits.

Bandwidth: As the number of bits transmitted to the
decoder from node ij is α(L + tij ,α + λij ), the total number
of transmitted bits is kαL + α

�k
j=1(tij ,α + λij ). There are

kαL bits in the message sequences, and hence the bandwidth
overhead is α

�k
j=1(tij ,α + λij ) = O(nk2d).

B. Repair Scheme of Shift-XOR MSR Codes

This section introduces our repair scheme for an [n, k, d]
shift-XOR MBR code, where d = 2k − 2 and α = k − 1.
Define an α × d matrix X = (xi,j) with xi,j = ΦiSj and
xi,j+α = ΦiTj for 1 ≤ i, j ≤ α. Suppose that node i fails.

Our repair scheme generates a new storage node that stores
the same α sequences at node i:

Yi = ΨiM = ΦiS+zλiΦiT = Xi
1:α +zλiXi

(α+1):2α. (29)

Recall that each storage node j ∈ 1 : n stores the sequences
ΨjM, and hence can compute locally the sequence

rj = ΨjM
�
Φi

��
= Ψj(Xi)�, (30)

which is a shift-XOR equation of Xi. By rj from any d nodes
j 
= i, we can solve Xi using the shift-XOR elimination, and
then calculate Yi by (29).

Specifically, the repair scheme includes two stages: the
transmission stage and the decoding stage. In the transmission
stage, d helper nodes are chosen to repair node i, which have
the indices i1, i2, . . . , id where i1 > i2 > · · · > id. Each
helper node iv (1 ≤ v ≤ d) transmits

r̂v = riv [tiv ,v + (1 : (L+ ti,α))] (31)

to the new node i for repairing, where the sequence riv is
defined in (30). In the decoding stage, the new node i performs
the shift-XOR elimination on r̂v , v = 1, . . . , d to decode Xi,
and then calculate Yi by (29).

Example 8: Consider the [6, 3, 4] MSR Code studied in
Example 2. This example will show the transmission and
decoding stages to repair node 3 from helper nodes 1, 2, 4
and 5, i.e., i1 = 5, i2 = 4, i3 = 2, i4 = 1 and i = 3. The
sequences transmitted to node i from the 4 helper nodes are

r̂1 = r5 [1 : (L+ 2)] = (Y5(Φ3)�) [1 : (L+ 2)] , (32)

r̂2 = r4 [4 : (L+ 5)] = (Y4(Φ3)�) [4 : (L+ 5)] , (33)

r̂3 = r2 [3 : (L+ 4)] = (Y2(Φ3)�) [3 : (L+ 4)] , (34)

r̂4 = r1 = Y1(Φ3)�. (35)

By (30), we have the system⎡
⎢⎢⎣
r5

r4

r2

r1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Φ5

Φ4

Φ2

Φ1

⎤
⎥⎥⎦�

X3
��

.

Applying the shift-XOR elimination on r̂1, r̂2, r̂3 and r̂4,
we can obtain X3, and hence solve Y3 by (29).

Time Complexity: At each helper node iv (v = 1, . . . , d),
computing r̂iv costs (α− 1)(L+O(nd)) XOR operations. So
there are totally d (α− 1) (L+O(nd)) = d(d

2−1)(L+O(nd))
XOR operations at all the helper nodes. At the new node i,
solving Xi costs d(d−1)(L+O(nd)) XOR operations by the
shift-XOR elimination. Computing Yi costs α(L+O(nα)) =
d
2 (L+O(nα)) XOR operations. So the total time complexity
at the new node i is d(d − 1/2)(L + O(nd)). The overall
time complexity among all the involved nodes is 3

2 (d − 1)
dL+O(nd3).

Bandwidth: As the number of bits transmitted from node
iv is L + ti,α, so the total number of bits transmitted is
d(L+ ti,α) = dL+O(nd2).

Space Complexity: The storage space of d(L + ti,α) =
d(L + O(nd)) bits is required to store the bits retrieved
from the helper nodes. As the shift-XOR elimination can
be implemented in-place, no extra storage space is required
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to store the intermediate results Xi. The total length of the
repaired sequences is α(L + λi + ti,α) = d

2 (L + O(nd)).
So the auxiliary space required for intermediate XOR results
is d

2 (L+O(nd)).

VI. EXTENSIONS TO OTHER PM-CONSTRUCTED CODES

The decompositions of our decoding and repair schemes
discussed in the previous two sections depend mostly on the
PM construction, and have little correlation to the shift and
XOR operations. Therefore, similar decomposition may be
possible for the decoding and repair of other regenerating
codes based on the PM construction. In this section, we study
the extensions of our decoding and repair schemes to the finite-
field PM codes [20], [21] and the cyclic-shift PM codes [28].

A. Extension to Finite-Field PM Codes

The finite-field PM codes in [20] use finite field operations.
Suppose the entries of a sequence are elements from a finite
field F. Same as the setting in Section II-B, using finite field
operations, we define

yi,j =
d�

u=1

ψi,umu,j, 1 ≤ i ≤ n, 1 ≤ j ≤ α,

where ψi,u ∈ F, and yi,j and mu,j are sequences of L bits,
or L symbols from F. Denoting Ψ = (ψi,j), called the
generator matrix, the encoding follows the same form of (1):

Y = ΨM. (36)

As Gaussian elimination can solve systems of linear equations
over finite fields, we can use Gaussian elimination in place of
shift-XOR elimination to build decode/repair schemes for the
finite-field PM codes.

1) Decoding Scheme of Finite-Field MBR Codes: For the
finite-field MBR codes in [20], Ψ in (36) is of the form

Ψ = [Φ Δ] ,

where Φ = (φi,j) and Δ are n× k and n× (d− k) matrices
respectively and satisfy: 1) any d rows of Ψ are linearly
independent; 2) any k rows of Φ are linearly independent.
Specifically, the Vandermonde matrix and Cauchy matrix
satisfy the above two conditions [20]. The message matrix
is of the form

M =
�

S T
T� O

�
,

where S is a k × k symmetric matrix and T is a k × (d− k)
matrix. There are totally 1

2 (k + 1)k + k(d − k) message
sequences. In the decoding algorithm of [20], the dk sequences
stored at k nodes are retrieved for decoding, so that the
decoding bandwidth overhead is 1

2k(k − 1) sequences.
Due to the same matrix form as the shift-XOR MBR

codes, we may wonder whether it is possible to derive a
similar decoding algorithm as in Section IV-A with zero
bandwidth overhead. We show it is possible when Φ satisfies
the further requirement that for any k rows of Φ, all the
leading principal submatrices are full rank. It is noted that

the Vandermonde matrix and Cauchy matrix used in [20] also
satisfy the requirement.

To illustrate the algorithm, suppose the first k storage nodes
are used for decoding. The decoding using other choice of
nodes is similar. The decoder first retrieves

Y1:k
(k+1):d = Φ1:kT.

As any k rows of Φ are linearly independent, T can
be decoded using Gaussian elimination. After decoding T,
we continue to decode the k columns of S sequentially
with the column indices in descending order. For u = k,
k − 1, . . . , 1,

Y1:u
u = Φ1:u

1:uS
1:u
u + Φ1:u

(u+1):kS
(u+1):k
u + Δ1:u(Tu)�,

i.e.,

Y1:u
u −Φ1:u

(u+1):kS
(u+1):k
u −Δ1:u(Tu)� = Φ1:u

1:uS
1:u
u .

After substituting T and S(u+1):k
u = Su

(u+1):k, the LHS of
the above equation is known and S1:u

u can be decoded by
Gaussian elimination as Φ1:u

1:u has rank u. Hence, S can be
decoded column by column.

The above decoding scheme has the same asymptotic
time/space/bandwidth complexity as the scheme for the shift-
XOR MBR codes, and the decoder retrieves exactly the same
number of bits as the message sequences.

2) Decoding Scheme of Finite-Field MSR Codes: For finite-
field MSR codes with d = 2k − 2 and α = k − 1 in [20],
the generator matrix Ψ is of the form

Ψ = [Φ ΛΦ] ,

where Φ is an n × α matrix and Λ = diag(λ1, . . . , λn) is
an n × n diagonal matrix and satisfy: 1) any d rows of Ψ
are linearly independent; 2) any α rows of Φ are linearly
independent; (3) the n diagonal elements in Λ are distinct.
The message matrix is of the form

M =
�
S
T

�
.

The coded sequences stored are obtained by

Y = ΨM.

The i-th row of Y are stored at node i, i.e., Yi = ΦiS +
λiΦiT.

Assume that the decoder has access to k nodes iu for 1 ≤
u ≤ k. For decoding, node iu transmits Yiu to the decoder.
As discussed in Section V-A.2, denote for 1 ≤ u 
= v ≤ k,

cu,v = Yiu(Φiv )�,
pu,v = ΦiuS(Φiv )�,
qu,v = ΦiuT(Φiv )�.

S and T can be solved by the following two steps.
Step 1: For 1 ≤ v < u ≤ k, we have the linear systems�

cu,v

cv,u

�
=

�
pu,v + λiuqu,v

pv,u + λivqv,u

�
=

�
pu,v + λiuqu,v

pu,v + λivqu,v

�

=
�
1 λiu

1 λiv

� �
pu,v

qu,v

�
.
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Gaussian elimination is performed on cu,v and cv,u to solve
pu,v and qu,v .

Step 2: Define an α× α matrix S̃ = (s̃v,u) as

S̃ =

⎡
⎢⎣
Φi1

...
Φiα

⎤
⎥⎦S. (37)

Due to the symmetry of S, (S̃v)� = S(Φiv )�. For each
v ∈ 1 : α, form the α× α linear system⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,v

...
pv−1,v

pv+1,v

...
pk,v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi1

...
Φiv−1

Φiv+1

...
Φik

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(S̃v)�,

so that (S̃v)� can be solved by performing Gaussian elim-
ination. After solving S̃, we further solve the linear sys-
tem (37). Hence, Su can be decoded by Gaussian elimination
on s̃v,u, v = 1, . . . , α.

T can be solved by the same procedure and hence is
omitted.

For our method, storage space of 2α × αL = 2(k − 1)2L
symbols are needed; while in [20] the decoding needs space
of 2k(k − 1)L symbols. Hence, we can reduce space of
2(k−1)L symbols. In addition, the computation of Yiu (Φiu)�

are omitted in our method, such that α multiplications of a
vector and a sequence can be reduced.

In [21], finite-field MSR codes for d ≥ 2k − 2 are con-
structed, where the decoding procedure involves the decoding
of the finite-field PM MSR codes with d = 2k−2. Therefore,
our decoding scheme mentioned above can also be substituted
into the decoding of these MSR codes for d ≥ 2k − 2, and
reduce the corresponding decoding complexity.

B. Extension to Cyclic-Shift Regenerating Codes

The cyclic-shift regenerating codes in [28] employ a cyclic-
shift operation defined as

�
zt

ca
�
[l] =

�
a [l + L− t] , 1 ≤ l ≤ t,
a [l − t] , t < l ≤ L.

Same as the setting in Section II-B, let

yi,j =
d�

u=1

zti,u
c mu,j , 1 ≤ i ≤ n, 1 ≤ j ≤ α,

where ti,u ≥ 0 are integers. Denoting Ψ = (zti,j
c ), the encod-

ing follows the same form as (1).
A system of cyclic-shift equations can be expressed as⎡

⎢⎢⎢⎣
y1

y2

...
yk

⎤
⎥⎥⎥⎦ = Ψ

⎡
⎢⎢⎢⎣
x1

x2

...
xk

⎤
⎥⎥⎥⎦ ,

where det(Ψ) has an inverse element in F2[z]/(1+ z+ · · ·+
zL−1). When Ψ is a Vandermonde matrix with k − 1 strictly
less than all divisors of L which are not equal to 1, the system
can be solved using the LU method [28].

Similar to shift-XOR codes in Section IV and Section V,
the decoding and repair of the cyclic-shift codes can be decom-
posed into a sequence of systems of cyclic-shift equations.
When n − 1 (where n is the number of storage nodes) is
strictly less than all divisors of L which are not equal to 1,
the sequence of systems can be solved by the LU method.
The decoding and repair schemes built in this way have
the same asymptotic complexity as that of our shift-XOR
codes.

VII. CONCLUDING REMARKS

One technical contribution of this article is an efficient
algorithm called shift-XOR elimination to solve a system of
shift-XOR equations satisfying the RID property. Our algo-
rithm consumes the exactly same number of XOR operations
for decoding as encoding the input subsequences, and can
be implemented in-place with only a small constant num-
ber of auxiliary integer variables. The shift-XOR elimina-
tion has the potential to be applied to and simplified the
decoding costs of a range of codes based on shift-XOR
operations.

For shift-XOR regenerating codes, the decoding/repair
schemes are decomposed into a sequence of systems of
shift-XOR equations. Our decoding/require schemes have
much lower computation costs than the existing schemes
for the shift-XOR regenerating codes, and demonstrate bet-
ter or similar computation costs compared with the regen-
erating codes based on cyclic-shift and XOR operations.
Our results provide a further evidence that shift and XOR
operations can help to design codes with low computation
costs.

Though we only studied the bit-wise shifts in this article,
our algorithms can be extended to byte-wise or word-wise
shifts to utilize multi-bit computation devices in parallel.

We are motivated to further explore the potential of
shift-XOR codes. In one direction, we may extend the
code constructions based on finite-field/cyclic-shift operations
(e.g., [21]–[27]) to ones using shift and XOR. In another
direction, we may investigate non-RID generator matrices,
which may have lower storage overhead.

APPENDIX

PROOF OF THEOREM 1

Here we prove Theorem 1, which concerns a k× k system
of shift-XOR equations (6), where Ψ = (zti,j ) satisfies the
RID property in Definition 1. Recall Lb defined in (10).

Lemma 1: For integers 1 ≤ u < v < k,

tk−v,v+1 − tk−v,u <

v�
b=u

Lb < tk−u,v+1 − tk−u,u.
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Proof: The lemma can be proved by applying the RID
property. On the one hand,

v�
b=u

Lb =
v�

b=u

(tk−b,b+1 − tk−b,b)

<

v�
b=u

(tk−u,b+1 − tk−u,b)

= tk−u,v+1 − tk−u,u.

On the other hand,

v�
b=u

Lb =
v�

b=u

(tk−b,b+1 − tk−b,b)

>

v�
b=u

(tk−v,b+1 − tk−v,b)

= tk−v,v+1 − tk−v,u.

Now we start to prove Theorem 1. We inductively show
that all the bits to solve in each iteration depend on only the
previous solved bits. We use li to denote the number of bits
solved in xi, which are zero initially. For k = 1, the shift-
XOR elimination is successful without using back substitution.
We consider k > 1 in the following proof.

Firstly, for an iteration s in 1 : L1, we see that

x1[s] = x̂1[s] +
k�

u=2

xu[s+ tk,1 − tk,u]

As s ≤ L1 = tk−1,2 − tk−1,1, we have s + tk,1 − tk,u <
tk,2 − tk,1 + tk,1 − tk,u = tk,2 − tk,u ≤ 0 for u ≥ 2 due
to the RID property. Hence x1[s] = x̂1[s] so that x1[s] can
be solved. After iteration L1, we have l1 = L1 and li = 0
for i > 1.

For certain 2 ≤ b ≤ k, fix an iteration s in
�b−1

b�=1 Lb� +(1 :
Lb) and an index i in 1 : b. We assume that the algorithm
runs successfully to iteration s with xu[s−�u−1

b�=1 Lb� ], for all
u < i solved, i.e.,

lu =

⎧⎪⎨
⎪⎩
s−�u−1

b�=1 Lb� , 1 ≤ u < i,

s− 1−�u−1
b�=1 Lb� , i ≤ u ≤ b,

0 u > b.

(38)

To check whether xi[li + 1] can be solved or not, we
write by (9)

xi[li + 1] = x̂i[li + 1] +
�
u�=i

xu[li + 1 + tk−i+1,i − tk−i+1,u].

(39)

We can check the second term on the RHS is solved as
follows:

1) For 1 ≤ u ≤ i− 1, xu[li + 1 + tk−i+1,i − tk−i+1,u] has
been solved as

li + 1 + tk−i+1,i − tk−i+1,u

= s− 1−
i−1�
b�=1

Lb� + 1 + tk−i+1,i − tk−i+1,u

= lu −
i−1�
b�=u

Lb� + tk−i+1,i − tk−i+1,u

≤ lu,
where the first two equalities are obtained by substituting
the formula in (38), and the inequality is obtained by
Lemma 1.

2) For i+ 1 ≤ u ≤ b, xu[li + 1 + tk−i+1,i − tk−i+1,u] has
been solved as

li + 1 + tk−i+1,i − tk−i+1,u

= s− 1−
i−1�
b�=1

Lb� + 1 + tk−i+1,i − tk−i+1,u

= lu + 1 +
u−1�
b�=i

Lb� + tk−i+1,i − tk−i+1,u

≤ lu + tk−i,u − tk−i,i + tk−i+1,i − tk−i+1,u

< lu,

where the first two equalities are obtained by substituting
the formula in (38), the first inequality is obtained by
Lemma 1, and the last inequality follows from the RID
property.

3) For b < u ≤ k, xu[li + 1 + tk−i+1,i − tk−i+1,u] = 0 as

li + 1 + tk−i+1,i − tk−i+1,u

= s−
i−1�
b�=1

Lb� + tk−i+1,i − tk−i+1,u

≤
u−1�
b�=1

Lb� −
i−1�
b�=1

Lb� + tk−i+1,i − tk−i+1,u

=
u−1�
i�=i

Li� + tk−i+1,i − tk−i+1,u

< 0,

where the first equality follows from (38), the first
inequality follows from s ≤ �b

b�=1 Lb� ≤
�u−1

b�=1 Lb� ,
and the second inequality is obtained by Lemma 1 and
the RID property.

Therefore, all terms on the RHS of (39) are known and hence
xi[li+1] can be solved. The proof of the theorem is completed.
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