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Abstract—Two efficient user scheduling metrics and their
corresponding algorithms are proposed for uplink multiuser
MIMO systems in a finite scattering environment, where users
typically transmit signals while sharing some clusters (which
can be trees and buildings). By utilizing statistical channel state
information such as how users employ clusters (e.g., percentage of
energy carried by each cluster) and spatial correlation matrices of
channels via each cluster, two scheduling metrics which achieve a
tradeoff between decreasing intra-link correlation and increasing
inter-link correlation are proposed. Two algorithms based on the
proposed metrics are further designed. The proposed algorithms
are of low complexity and can be executed in a low frequency
through utilizing simple operations and statistical channel in-
formation, which brings in a great computational complexity
reduction. Simulation results show that both algorithms could
achieve significant sum rate gains comparing with other existing
algorithms, and the performance can be close to that of the
optimal scheme.

I. INTRODUCTION

Multi-user multiple input and multiple output (MU-MIMO)

systems have been drawing a lot of attention because of its

high spectral efficiency and diversity gain [1][2]. A base sta-

tion (BS) equipped with multiple antennas can communicate

with multiple users in the same time-frequency slot via space-

division multiple access, providing a substantial gain to system

throughput [3]. However, the number of users which can be

simultaneously served is limited by BS antenna number, due

to the utilizing of block-diagonalization zero-forcing (BD-

ZF) schemes which can eliminate inter-user interference [4].

Therefore, it is necessary to design user scheduling scheme

to select the optimal user set in order to maximize system

throughput in MU-MIMO systems.

The optimal user set can be obtained by a brute-force

traversal search, with a prohibitive computational burden.

In order to reduce complexity, several suboptimal strategies

have been proposed [5–7]. Capacity-based algorithm in [5]

selects users iteratively to maximize system capacity, but the

complexity is too high since a large number of singular value

decomposition (SVD) operations are required. Frobenius norm

based algorithm is further proposed so as to reduce complexity,

however, the performance degradation is inevitable. Orthog-

onality is also an important factor in the scheduling metric

design. The authors in [6] propose a scheduling method based

on chordal distance (a metric which measures orthogonality

among users’ signal subspaces), and it achieves a performance

close to that of capacity-based algorithm. In [7], an algorithm

is proposed to select users according to the orthogonality

between principle eigenvectors of users’ channel matrices, and

it achieves a capacity close to that of the optimal strategy.

However, all above orthogonality measurements require a great

many SVD operations, which compromises their practicality.

Furthermore, these algorithms in [5–7] have to update their

selected user subset as instantaneous channel state information

(CSI) changes, which causes a high update frequency and thus

a heavy computational burden.

In this paper, we investigate the problem of statistical

CSI based scheduling for uplink MU-MIMO systems in a

finite scattering environment. In real propagation environment,

scatterers can be leaves, walls and cars, etc., and several

scatterers close to each other can be treated as a cluster, such

as trees and a building. For a multiuser system in a finite

scattering environment, many users may have to share some

common clusters to transmit signals. The main contributions

of this paper are summarized as follow.

• Two statistical CSI based metrics that achieve a tradeoff

between decreasing intra-link correlation and increasing

inter-link correlation are proposed. They utilize statistical

CSI like percentage of energy carried by each cluster,

and correlation matrix of channel via each cluster. The

metrics are of low computational complexity by avoiding

SVD operations.

• Based on the two metrics, two corresponding scheduling

algorithms that select users iteratively are designed. Sim-

ulation results indicate that the proposed algorithms could

achieve sum rates that are close to the optimal algorithm,

and higher than other suboptimal algorithms. Moreover,

they have a low update frequency by purely utilizing

statistical CSI, which contributes to a great reduction of

computational burden.

The rest of this paper proceeds as follows. The MU-MIMO

uplink system model is described in Section II. Section III

presents the proposed metrics and the user selection algo-

rithms. Simulation results are provided in Section IV and

conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider a single-cell uplink MU-MIMO system. The BS is

equipped with N antennas, and serves K users simultaneously.
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Each user has M antennas. The BS is surrounded by Ns

clusters, each of which may consist of several scatterers. The

uplink signal transmitted by each user arrives at the BS via

part or all of the clusters. Accordingly, the uplink flat fading

channel of user k ∈ {1, ...,K} can be written as

Gk =

Ns∑
n=1

√
cknHkn ∈ C

N×M , (1)

where Hkn denotes the subchannel from user k to the BS via

cluster n, and it is normalized as E

[
‖Hkn‖2F

]
= 1. ckn is a

measure called the significance of cluster n for user k as in

[8]. It measures the percentage of energy carried by cluster n
in the channel of user k, and satisfies the following constraints:

0 ≤ ckn ≤ 1 (k = 1, ...,K, n = 1, ..., Ns) , (2a)

Ns∑
n=1

ckn = 1 (k = 1, ...,K) . (2b)

Consequently, we have E

[
‖Gk‖2F

]
= 1.

Regarding subchannel Hkn, the physical MIMO channel

model is considered. Assume cluster n consists of pn discrete

isotropic point scatterers, each of which corresponds to a path

that arrives at BS. The path from user k to the BS via scatterer

i ∈ {1, ..., pn} of cluster n is characterized by a complex

amplitude a
(kn)
i , a direction of departure (DOD) β

(kn)
i , and

a DOA α
(kn)
i . It is further assumed that α

(kn)
i is invariant

with user index k, thus we have α
(kn)
i = α

(n)
i . Accordingly,

Hkn can be written as

Hkn =

pn∑
i=1

a
(kn)
i er

(
α
(n)
i

)
eHt

(
β
(kn)
i

)
, (3)

where a
(kn)
i follows independent Gaussian distribution with

zero mean and a variance of 1/pn. er (α) ∈ C
N×1 and

et (β) ∈ C
M×1 are normalized steering vectors associated

with DOA α and DOD β, respectively [9].

Given the transmit power constraint P for each user and the

noise power spectral density σ2 at receive antennas, we define

the signal to noise ratio (SNR) as γ = P
/
Mσ2. Then based

on the model above, the ergodic sum rate when applying dirty

paper coding (DPC) is

R = E

[
log2 det

(
IN + γ

K∑
k=1

GkG
H
k

)]
. (4)

The closed form of the above ergodic sum rate is difficult

to obtain. Consequently, the design of our user scheduling

strategy is based on the capacity upper bound which can be

obtained according to the concavity of log2 (det (X)) function.

The upper bound can be written as

Rup = log2 det

(
IN + γ

K∑
k=1

E
[
GkG

H
k

])
, (5)

where Φk = E
[
GkG

H
k

]
is in fact the spatial correlation

matrix of channel Gk at BS. According to (1) and (3), it can

be written as

Φk =

Ns∑
n=1

ckn
pn

pn∑
i=1

er

(
α
(n)
i

)
eHr

(
α
(n)
i

)
. (6)

Let Rn = 1
pn

pn∑
i=1

er

(
α
(n)
i

)
eHr

(
α
(n)
i

)
, then Rn is the spatial

correlation matrix of subchannel Hkn at BS, and is invariant

with index k. Hence we have

Rup = log2 det

(
IN + γ

Ns∑
n=1

Rn

K∑
k=1

ckn

)
. (7)

Obviously, the upper bound Rup is a function of the signifi-

cance coefficient ckn and the spatial correlation matrix Rn.

III. LOW COMPLEXITY SCHEDULING DESIGN

In this section, two statistical CSI based user scheduling

metrics are proposed. On one hand, users who transmit signals

via more clusters are preferable, which contributes to lower

intra-link spatial correlations. On the other hand, however,

users sharing too many clusters causes an increase of inter-link

correlations, which will reduce the sum rate. Consequently,

a tradeoff between these two aspects is achieved by the

proposed two metrics. Two user scheduling algorithms are

further designed.

A. Channel Parameter Estimation

The estimations of ckn and Rn will be briefly discussed

in this subsection which serves as a foundation for the later

metric design in subsection B. In order to estimate these

parameters, pilot-aided uplink channel estimation is applied.

Consider T ∈ Z+ consecutive or nonconsecutive time slots,

during which ckn and DOAs remain constant, but a
(kn)
i varies

from slot to slot. Thus the signal received at BS in the tth
(t ∈ {1, ..., T}) time slot is

Y (t) =
K∑

k=1

Gk (t)Xk (t) +N (t) , (8)

where Xk (t) ∈ C
M×MK represents the pilot sequences trans-

mitted by user k and N (t) is the additive white Gaussian noise

(AWGN) at receiver antennas. Orthogonality of Xk requires

Xk (t)Xk(t)
H

= IMK and Xk (t)Xl(t)
H

= 0 (k �= l).
Consequently, Gk (t) can be estimated as

Ĝk (t) = Y (t)XH
k (t) = Gk (t) +N (t)XH

k (t) . (9)

Let η
(kn)
i (t) =

√
ckna

(kn)
i (t), then applying SAGE (space-

alternating generalized expectation-maximization) algorithm

to Ĝk (t) provides the estimators of η
(kn)
i (t), α

(n)
i and β

(kn)
i ,

denoted as η̂
(kn)
i (t), α̂

(n)
i (t) and β̂

(kn)
i (t), respectively [10].

α̂
(n)
i (t) is tagged with time slot index t since the estimator can

be inaccurate and vary from slot to slot. Further, virtual cluster
(VC) is defined to tag each path with a proper cluster index.

Specifically, when paths have DOA estimators that fall into
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the same angle range [θnl, θnh], we consider them from VC

n, even though they may be scattered from several different

physical clusters in reality. Let Sn (t) be the set of paths that

tagged with VC n in slot t, Rn can be estimated as

R̂n =
1

T

T∑
t=1

Ĥkn (t) Ĥ
H
kn (t), (10)

where Ĥkn (t) can be obtained as

Ĥkn (t) =
∑

i∈Sn(t)

â
(kn)
i (t) er

(
α̂
(n)
i (t)

)
eHt

(
β̂
(kn)
i (t)

)
.

(11)

Based on Eq. (1)-(3), ckn is related to η
(kn)
i as

ckn = E

[∑
i∈Sn

∣∣∣η(kn)i

∣∣∣2
]
. (12)

As a result, ckn can be estimated as

ĉkn =
1

T

T∑
t=1

∑
i∈Sn(t)

∣∣∣η̂(kn)i (t)
∣∣∣2. (13)

B. User Selection Metric

Different from existing strategies which utilize instanta-

neous CSI, our metric emphasizes long term channel spatial

structure, such as the spatial correlation matrix of subchannel

via each VC and how users make use of these VCs to transmit

signals. To find the best way to utilize the VCs, an optimization

problem is first introduced below:

P1 : max
ckn

R̂up = log2 det

(
IN + γ

Ns∑
n=1

R̂n

K0∑
k=1

ckn

)

s.t. 0 ≤ ckn≤ 1 (k = 1, ...,K0, n = 1, ..., Ns)
Ns∑
n=1

ckn= 1 (k = 1, ...,K0) ,

where K0 ≤ K is the number of users to be selected.

It can be proved that P1 is a convex optimization problem

by second-order condition, and thus its optimal solution can

be calculated numerically with interior-point methods [11].

The detailed proof is omitted here due to the lack of space.

Denoting the optimal solution as {c∗kn}, it represents the best

way for the K0 users to utilize the clusters in terms of

maximizing sum rate upper bound. Consequently, the users

whose ckn are closer to c∗kn should be selected with a higher

probability. Define c∗k =
[
c∗k1, ..., c

∗
kNs

]
as the optimal vector

for the kth user, and c∗ =
[
c∗1, ..., c

∗
K0

]
. The closeness

between a user subset and the optimal solution c∗ is measured

by a distance to be introduced in the following.

Let x = Cm
K (m ≤ K0) be the number of combinations of

choosing m elements from {1, ...,K}, and K = {K1, ...,Kx}
contains all possible combinations. Ki (i ∈ {1, ..., x}) is a set

of m elements and represents the ith combination. We also

let y = Cm
K0

be the number of combinations of choosing m

elements from {1, ...,K0}, and define K̃ =
{
K̃1, ..., K̃y

}
and K̃j (j = 1, ..., y) in a similar way. Let z = m! and

Bi = {bi1, ...,biz} denote all permutations of Ki, with the

vector bij ∈ C1×m being the jth permutation. Therefore, the

distance between subset Ki and c∗ is defined as

d (Ki, c
∗;m) = min

K̃i∈K̃
min
b∈Bi

⎛
⎝ m∑

j=1

Ns∑
n=1

∣∣∣c∗K̃i(j)n
− cbjn

∣∣∣p
⎞
⎠

1
p

,

(14)

where p ≥ 1 is a real number, K̃i (j) is the jth element of K̃i

and bj is the jth element of b. cbjn will be replaced by ĉbjn
when only its estimator is available.

Since having a smaller distance means the selected K0 users

in Ki use clusters in a better way, it seems that the smaller

d (Ki, c
∗;K0) is, the better the subset Ki will be. However,

distance is not the only factor. The visibility of clusters to

users is not embodied in P1. Consequently, c∗ is obtained

on the basis of an assumption that all clusters are visible

to all users. Hence, it is possible that c∗ has very few zero

elements when Ns is large. The reason is that transmitting

signals via more clusters results in a larger DOA angle spread

and more spatial degrees of freedom (DOFs), the benefit

from which may outweigh the harm from sharing all clusters

(which increases inter-link correlation and compromises sum

rate). In practice, however, only a finite number of clusters

are visible to a specific user based on the user location,

which will greatly reduce the DOFs [12]. In this case, the

increase of inter-link correlation resulted from sharing clusters

cannot be neglected. In this paper, the inter-link correlation

is evaluated by calculating the correlation matrix collinearity

(CMC) as [13]

h′ (k, l) =

∣∣tr (ΦkΦ
H
l

)∣∣
‖Φk‖F ‖Φl‖F

∈ [0, 1] , (15)

where Φk is the intra-link spatial correlation matrix defined

in (6), and tr (X) calculates the trace of matrix X. h′ (k, l)
describes how similar the subspaces of correlation matrices of

user k and user l are. A smaller h′ (k, l) indicates a lower

inter-link correlation between user k and user j. The CMC of

subset Ki is defined as

h (Ki) =
∑

k,l∈Ki,k �=l

h′ (k, l). (16)

Based on the definitions as in (14) and (15), we propose the

following metric for subset Ki as

f (Ki;m) = αd (Ki, c
∗;m) + (1− α)h (Ki) , (17)

where α ∈ [0, 1] is a weighting coefficient.

The target is to find the optimal K0 users so as to minimize

f as follows

P2 : K∗i = argmin f (Ki;K0)

s.t. Ki ∈ K.
C. Cluster Information based Algorithms

The optimal solution of P2 can be obtained with a brute-

force approach to search over all subsets in K. However, the

complexity burden is prohibitive when K and K0 are large.
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Therefore, a suboptimal low complexity selection algorithm

which iteratively selects users is proposed. Assume that the

optimal significance vector c∗ has been obtained before user

selection, and it is regarded as one of the inputs. The detailed

process is described as follows.

Algorithm 1 : Cluster Information based Algorithm
Input:

The estimators of cluster correlation matrices: R̂n;

The estimators of significance coefficients: ĉkn;

The optimal significance vector c∗;
User number K and selected user number K0;

Metric parameters: p and α;

Step 1:
1: Initialize: Ω = {1, ...,K}, Υ = ∅, and m = 1.

2: Obtain set K̃ as defined.

3: Let s1 = argmin
i∈Ω

d ({i} , c∗;m).

4: Update: Ω← Ω− {s1} and Υ← Υ+ {s1}.
5: Calculate the capacity upper bound when serving user

subset Υ, Rup (Υ).
Step 2:
6: for m = 2 : K0 do
7: Update set K̃.

8: sm = argmin
i∈Ω

f (Υ ∪ {i} ;m).

9: Calculate the capacity upper bound Rup (Υ ∪ {sm}).
10: if Rup (Υ ∪ {sm}) ≤ Rup (Υ) then
11: go to step 3;

12: else
13: Rup (Υ)← Rup (Υ ∪ {sm}).
14: end if
15: Update: Ω← Ω− {sm} and Υ← Υ+ {sm}.
16: end for
Step 3:
17: Terminate the algorithm.

Output:
The selected user subset: Υ.

It can be seen that the algorithm avoids time-consuming

SVD operations. In addition, it is only based on statistical

CSI. Thus the selected user subset will not be updated until

the statistical CSI changes, which contributes to a great

computational burden reduction.

However, the distance in (14) involves comparisons over all

permutations of Ki and all combinations K̃i, which leads to

a large searching space when K0 and K are large. Moreover,

the distance does not support recursive calculation from the

previous iterations. As a result, the search has to be executed

in each iteration. To further reduce computational complexity,

a distance that supports recursive calculation is proposed.

Denote d1
({i} , c∗j) as the distance between user i and

vector c∗j , which can be expressed as follows

d1
({i} , c∗j) =

(
Ns∑
n=1

∣∣c∗jn − cin
∣∣p)

1
p

. (18)

Let Ω0 = {1, ...,K0} and Ψ ⊆ Ω0, then the distance between

user i and the optimal vector c∗ on the support of Ψ is defined

as

d2 ({i} , c∗; Ψ) = min
j∈Ψ

d1
({i} , c∗j) . (19)

Let li = argmin
j∈Ψ

d1
({i} , c∗j), then the distance between

subset Ki and c∗ is defined as

d̃ (Ki, c
∗;m) =

(
m∑

k=1

d2

(
{Ki (k)} , c∗; Ω0 −Υ

(i)
k−1

)p) 1
p

,

(20)

where Υ
(i)
k =

k∪
j=1

{
lKi(j)

}
and Υ

(i)
0 = ∅. Ω0 −Υ

(i)
k−1 means

removing the elements of Υ
(i)
k−1 from Ω0.

Based on the definition as in (20), it is straightforward to

see that distance d̃ supports recursive calculation as

d̃ (Ki + {j} , c∗;m+ 1) =
(
d̃(Ki, c

∗;m)
p

+d2

(
{j} , c∗; Ω0 −Υ

(i)
m−1 ∪

{
lKi(m)

})p) 1
p

,
(21)

where Ki+{j} means adding j to Ki as its last element. Based

on this distance definition, we propose a less tight metric as

f̃ (Ki;m) = αd̃ (Ki, c
∗;m) + (1− α)h (Ki) . (22)

The target is to select the best K0 users so as to minimize

f̃ as P3. An algorithm is further proposed in next page.

P3 : K∗i = argmin f̃ (Ki;K0)

s.t. Ki ∈ K.
As shown in Line 7 of Algorithm 2, distance dtp of the

current iteration can be calculated from that of the previous

iteration and a simple distance d2, which greatly narrows

down the searching space. From this point, we can see that

Algorithm 2 is of great lower complexity than Algorithm 1.

D. Computational Complexity Analysis

We evaluate the computational complexity of the proposed

two algorithms in terms of the number of flops. A real

addition, multiplication, or division is counted as one flop.

p = 1 is considered here as an example to shed some light

on the complexity comparison. As shown in algorithms, the

complexity mainly comes from the calculation of distance d or

d̃, CMC h and the iterations. The detailed analysis is omitted

here , and only results are presented. After calculating step by

step, we obtain that the complexity lower bound of Algorithm

1 is O
(
NsK0

(K0+1) +N2K0
4
)

; the complexity upper bound

and lower bound of Algorithm 2 are O ((Ns +N2
)
K3
)
,

O ((Ns +N2
)
K0

3
)
, respectively. It can be seen that both

two algorithms have quadratic complexity with BS antenna

number N , instead of N3 in SVD-involved algorithms, which

brings in a great complexity reduction when N is large.

In addition, the complexity upper bound of Algorithm 2

increases cubically as user number K grows large, while

the lower bound of Algorithm 1 increases exponentially as
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Algorithm 2 : Simplified Cluster Information based Algo-
rithm
Input: R̂n, ĉkn, c∗, K0, p and α.

Step 1:
1: Initialize: Ω = {1, ...,K}, Ω0 = {1, ...,K0};

Υ = ∅, Υ0 = ∅ and m = 1.

2: Let s1 = argmin
i∈Ω

d2 ({i} , c∗; Ω0).

3: Let l1 = arg min
j∈Ω0

d1
({s1} , c∗j), dtp = d1

({s1} , c∗l1).
4: Update: Ω← Ω− {s1}, Υ← Υ+ {s1};

Ω0 ← Ω0 − {l1}, Υ0 ← Υ0 + {l1}.
5: Calculate Rup (Υ) and h (Υ).
Step 2:
6: for m = 2 : K0 do

7:
sm = argmin

i∈Ω

{
α[dtp

p + d2({i} , c∗; Ω0)
p
]
1/p

+(1− α)
[
h (Υ) +

∑
k∈Υ h′ (k, i)

]}
.

8: Calculate upper bound Rup (Υ ∪ {sm}), and h (Υ).
9: if Rup (Υ ∪ {sm}) ≤ Rup (Υ) then

10: go to step 3;

11: else
12: Rup (Υ)← Rup (Υ ∪ {sm}).
13: end if
14: Let lm = arg min

j∈Ω0

d1
({sm} , c∗j).

15: Update: dtp ←
[
dtp

p + d1
({sm} , c∗lm)p] 1

p .

16: Update: Ω← Ω− {sm}, Υ← Υ+ {sm};
Ω0 ← Ω0 − {lm}, and Υ0 ← Υ0 + {lm}.

17: end for
Step 3:
18: Terminate the algorithm.

Output:
The selected user subset: Υ.

K0 grows. Consequently, Algorithm 2 is of significant lower

computational complexity than Algorithm 1, when K and K0

are very large and have the same order of magnitude.

IV. SIMULATION RESULTS

In this section, numerical results are provided to evaluate the

proposed algorithms. Perfect channel estimation is assumed.

The simulation scenario is firstly presented as in Fig. 1. The

units of both axes are in meters. A linear array is located at the

BS, vertical to x-axis. Thus we only consider the left half of

the cell, the radius r of which is 500 meters. The locations of

Ns clusters and K users are generated randomly via uniform

distribution. The cluster-to-BS distance is 50 ≤ ds ≤ 200, and

the user-to-BS distance is 200 ≤ du ≤ 500. The radius of a

cluster is 10 meters. Each cluster provides 20 paths.

In real propagation environment, the visibility of a cluster

to a user is based on their locations. In our simulation, the

visibility is manually set. For example, four users in Fig. 1

are set to have access to one cluster which is nearest to them

(the dashed lines for user 1-4), and three users have access to

two nearest clusters (the dotted lines for user 5-7). For user
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Figure 1. Simulation scenario for K = 7, Ns = 4. A dotted or dashed line
between a cluster and a user indicates the cluster is visible to the user.
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Figure 2. Sum rates with K = 7, K0 = 4, Ns = 4, M = 8 and N = 32.

5-7, the significance coefficients of the two visible clusters are

0.2 and 0.8, with no specific order.

In this simulation, ergodic sum rates of the proposed al-

gorithms are evaluated. They are obtained by averaging over

1000 independent location generations, in each of which 1000

independent flat fading channel realizations are generated.

Performances of brute force algorithm (brute force alg), capac-

ity based algorithm (capacity base alg), and chordal distance

based algorithm (chordal distance alg) are also provided for

comparison. Given p = 1 and different values of α, simulation

results for N = 32, M = 8, K = 7, K0 = 4, and Ns = 4 are

shown in Fig. 2. Several conclusions can be drawn from it.

• Firstly, significant performance gains are achieved from

the proposed two algorithms. For each value of α,

their sum rates are higher than chordal distance based

algorithm. With α = 0.7 and SNR being 15dB, they

achieve sum rates almost the same as that of brute force

algorithm, 1.5 bit/s/Hz and 6 bit/s/Hz higher than those
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of capacity based algorithm and chordal distance based

algorithm, respectively.

• Secondly, the performances of the proposed two algo-

rithms vary with the value of α. In this simulation,

α = 0.7 brings the highest sum rates for the two

algorithms. The observation that α = 1 does not bring

the highest rates justifies our consideration about inter-

link correlation.

• Furthermore, although based on a less tight metric, the

optimal performance of Algorithm 2 can be very close

to that of Algorithm 1. When α = 0.7, capacity of

Algorithm 2 is only 0.5 bit/s/Hz smaller than Algorithm

1. More importantly, Algorithm 2 has a much lower

complexity, thus it is of a much higher practical value.

Increasing user number and cluster number to 10 and 5,

respectively, we present the results as in Fig. 3. Five users

have access to one nearest cluster, and the other five to nearest

two. We choose five users out of ten.
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Figure 3. Sum rates with K = 10, K0 = 5, Ns = 5, M = 8 and N = 40.

The conclusions drawn from Fig. 3 are similar to those from

Fig. 2, except that α = 1 instead of α = 0.7 brings the

highest sum rates in the proposed algorithms. One possible

reason is that with more clusters distributed around BS, using

more clusters increases DOFs significantly, the benefit from

which outweighs the harm from higher inter-link correlation.

Therefore, it is necessary to assign a proper value to α
according to the specific scenario. The optimization algorithm

of α will be considered in the future work.

V. CONCLUSIONS

In this paper, two user scheduling metrics for MU-MIMO

systems in a finite scattering environment are proposed. By

making use of long term spatial structure of user channels,

the proposed metrics can achieve a tradeoff between decreas-

ing intra-link correlation and increasing inter-link correlation.

Furthermore, two user selection algorithms which select users

through iterations are designed. Simulation results show that

our algorithms achieve higher sum rates than chordal-distance-

based algorithm and capacity algorithm, and the performances

can be close to that of brute force algorithm with a proper

parameter value. Last but not the least, our algorithms are

of high practical value since they are of low computational

complexity, especially the second algorithm, and the selected

user subsets can be updated in a low frequency.
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