

Proceedings of IC-NIDC2010

A NEW ARCHITECTURE OF WEB APPLICATIONS –
THE WIDGET/SERVER ARCHITECTURE

Zhiqing Xiao1,2,3, Si Wen1,2,3, Heqi Yu1, Zhenyu Wu1, Hao Chen1,2,3,Chunhong Zhang1,2,
Yang Ji1,2

1. Mobile Life and New Media Lab, Beijing University of Posts and Telecommunications, Beijing, China
2. Key Laboratory of Universal Wireless Communication, Ministry of Education,

Beijing University of Posts and Telecommunications, Beijing, China
3. School of Information and Communication Engineering,

Beijing University of Posts and Telecommunications, Beijing, China
xiaozhiqing@bupt.edu.cn, wensi@bupt.edu.cn, yuoek85@bupt.edu.cn, shower0512@gmail.com,

gary.haochen@gmail.com, zhangch@bupt.edu.cn, jiyang@bupt.edu.cn

Abstract
In the past two decades, the demands for web
applications grow dramatically. The Client/Server
architecture and the Browse/Server architecture are
widely implemented into web applications. But
some shortcomings are revealed in practical using,
especially when many applications are run at
mobile terminals nowadays. The information
efficiency of B/S, which is indicated by the
information quantity per bit, is low, while C/S
applications are not flexible enough and often
require annoying, unfriendly, time-consuming
installation and update procedures. At the same
time, widgets, as a light-weighted and flexible
representation form, are providing excellent user
experiences to more and more people. This paper
is aimed to propose a new software architecture –
the Widget/Server architecture. It combines merits
of the information efficiency and light-weighted
flexibility. Widget platforms’ job can be divided
into two layers: the representation layer and the
service interaction layer. Web servers’ jobs can be
divided into three layers: the service providing
layer, the information processing layer and data
convergence layer. Some interfaces are defined to
make the communications among layers
standardized. A prototype project was also
implemented to show the validity of the W/S
architecture.

Keywords: Widget/Server architecture; web
application

1 Introduction
As the wide spreading of Internet, the demands for
networking applications grow dramatically. With a
large number of web applications, the
Client/Server architecture and the Browse/Server
architecture are widely implemented into web
applications. But some shortcomings are revealed
in practical use, especially when many applications

are run at mobile terminals. B/S applications are
very poor on information efficiency. Most of web
pages need to transfer meaningless tags (such as
<html> or <body>) and enormous JavaScript codes,
while few of the codes really work. But B/S
applications are easy to access. You can load a lot
of web pages without any previous conditions
except for a general-purpose browse. A lot of
applications have been transplanted into B/S
architecture (such as “Web QQ”, which is widely
used while users want to have an instant transitory
access to QQ.) C/S applications are heavy-
weighted and inconvenient to install and update.
Users need to run an executable installation file
and wait a long time for its completion. In worse
conditions, some installations even require to
reboot the computers and write a lot of perplexing
messages to registration table. The C/S
applications are also difficult to update. However,
despite C/S applications demand annoying,
unfriendly, time-consuming installation and
updating procedures, the information transferred in
Client/Server applications is very efficient since
nearly all the data transferred is useful.
This paper is aimed at to propose an architecture
which combines the merits of B/S and C/S
architecture. Then Widget, a new thing in Web 2.0,
comes into our consideration.
Widget is a small, portable application or piece of
dynamic content that can be easily placed into a
platform (embedded browser for example). The
light-weighted and flexible widgets are providing
excellent user experiences to progressively
increasing number of people.
To take the advantages of Widgets, we propose a
new software architecture – Widget/Server
architecture (W/S), which assembles Widgets and
servers.
The W/S architecture utilized the data transferred
while ensure the user experience. Since most of
widgets can be downloaded and rerun by using
local codes, we only need to transfer the new data
which contain the latest information or codes.

866

978-1-4244-6852-2/10/$26.00 ©2010 IEEE

Widgets are easier to be accepted by new users
because users do not need to install a new
application. The procedure of updating software
can be simplified into downloading new codes.
This paper is organized as follows. First, we
survey related work in Section 2. In Section 3, the
Widget/Server architecture is outlined by dividing
them into several layers. The interfaces between
the layers are also defined. Furthermore, a
prototype is implemented and evaluated. We
present our conclusions and make an outlook onto
future work in Section 5.

2 Related work
Some navigation mechanisms have been proposed
to combine the advantages of B/S and C/S, such as
isomerous architecture style[1] and formalizing
software architecture style.[2] But none of them
position widgets as a principal user interface. Most
of them simply assemble B/S and C/S together and
provide the hybrid or both options to users. Some
other researches had considered other light-
weighted component for user interfaces[3], such as
UIMS.[4]
Recently, great efforts have been done to the
Widgets. Widget is a term originated from
information theory. The Jaynes "widget problem"
is reviewed as an example application for the
principle of maximum entropy in the making
decisions.[5] In Feb 2003, Widget, a new form of
user interface was created when Rose, an engineer
in Apple Coop. and his friend Perry revealed a
toolkit application Konfabulator 1.0. It got huge
positive responses once it was released.[6] After
that, several trials on widget-based representation
have been published.[7] Moreover, Microsoft
Cooperation integrated Widgets into its operating
system Windows Vista in 2006. But most of
widgets are stand-alone applications. Additionally,
some Widget engines, such as JIL Widget engine,
have been developed to provide the runtime
environment for Widgets.[7] There are also
projects which involve in middleware providing.[8]
In age of Web 2.0, online information is becoming
flooding and noisy. And many approaches are
developed to tag different resources, one of the
most outstanding style methods is REST, which is
put forward by T. F. Roy. REST, which is short for
REpresentational State Transfer, uses limited
action (GET, PUT, POST and DELETE) to do all
tasks to achieve the generality of interfaces and
independent deployment of components.[9]

3 The W/S architecture
The Widget/Server architecture is to connect
Widget platforms and web servers by networks,
which include mobile networks and computer
networks. Widgets can be presented in both
computers and mobile terminals. A web server can

also acquire data from other web servers.
In order to attract more companies and developers
to come into the implementation of W/S
architecture and make different W/S components
cooperate with each other, we divide the W/S
architecture into several layers and define
standardized, uniform interfaces. Both Widget
platforms and web servers are divided into several
layers.

Figure 1. The topology of W/S architecture

Representation�Layer

Service�Interaction�Layer

Service�Providing�Layer

Information�Processing�Layer

Data�Convergence�Layer

DatabasesDatabases

WDI

NSI

CQI

DQI

SQL�/�LINQ�/�...

Widget
Platform

Web
Server

Other Web ServersOther Web Servers

NSI

WDI = Widget Data Interface
NSI = Network Service Interface
CQI = Computing Query Interface
DQI = Database Query Interface

Figure 2. The layer map of the W/S architecture

3.1 Layers

Aiming at keeping the core representation and
processing procedure unrelated to networks and
communications, all procedures about data
transmissions and data I/O should be separated
from core computing. Therefore, the layer division
becomes necessary.
The goal of widget platform is to interpret the
Widget code into native program and represent the
data to users. Parsing the HTTP request stream and
interoperating with the server is not included.
Therefore, the Widget platform can be divided into

867

two layers – the representation layer and the
service interaction layer.
For the same reason, the core computing at web
server need to be relatively isolated from the
access to data sources and web service providing.
Therefore, the web server can be divided into three
layers – the service providing layer, the
information processing layer and the data
convergence layer. The service providing layer is
to provide web service interface to web
applications, especially to Widget platforms. The
information processing layer, which is a traditional
computing module, is where the information is
processed. The data convergence layer is the only
module that contacts the databases directly. It is
used to mask the heterogeneity of databases. For
example, in the pervasive storage cloud, the
information may reside in different kinds of
database (such as relational databases that use SQL
and object databases that use LINQ) at different
places (American, Europe, etc.). This layer shields
their differences. At the same time, the data
convergence layer can also require information
from other web servers to achieve extensive data
convergence.

3.2 Interfaces

There are several interfaces between layers. The
interface among Widget platforms and web servers
is the network service interface (NSI). This
interface rides in standard HTTP package to be
compatible with the large amount of current
content sources. It’s not only the interface between
Widget platform and web server, but also the
interface between two web servers. Once receiving
a HTTP request in the form of NSI, a web server
should response according to the request and its
authority, no matter whether it’s a widget platform
or another web server. To simplify the interface
implementation, we strongly recommend that the
NSI be in form of REST. By using REST, the
components become more flexible and portable
between different platforms.
The interfaces within Widget is the Widget data
interface (WDI). It may be implemented in form of
standard serialized objects to hence the efficiency
when carrying information.

There are two interfaces – the computing query
interface (CQI) and the database query interface
(DQI) within web server. CQI, which is the
interface connecting the service providing layer
and the information processing layer, queries the
data needed by computing module. We
recommend that CQI follow the identical standard
to the widget data interface. In this way, the
complexity of overall interfaces can be decreased
and there will be some possibility of directly
connecting the representation layer and processing
layer. The program written for Widget platforms
may be reused to web servers.

4 Experimental evaluation

4.1 Prototype Implementation

In order to evaluate the efficiency of W/S
architecture, we implement a prototype named
“Temperature monitor system”.
The target of “Temperature monitoring system” is
to oversee the temperature of some observation
points. For example, the environment of machine
rooms or communication rooms is a vital part of
uninterrupted web service and communication
system. Many of them, especially the basic stations
of mobile communication at remote areas, endure
the unstable power environment and adverse
machine environment. In the "Temperature
monitoring system", we designed with W/S
architecture combined with wireless sensor
network, to inform their environment temperatures
and related warning message to mobile widgets.
At Widget platform, we use JIL Widget engine as
representation layer to represent HTML,
JavaScript and CSS codes to users. The NSI is
REST realized by PHP. The code at web server is
PHP.
In terms of interface implementation, WDI is the
standard JavaScript objects and CQI is the standard
PHP objects. The database is a MySQL database,
which is accessed by SQL. Having collected the
data, the sensors send HTTP POST request to web
server to insert data though REST.
The user interface of the sample widget is as
follows.

�

Figure 3 User interfaces of Temperature
monitoring system

4.2 Performance evaluation

This prototype reflects the advantages of W/S
architecture over the traditional B/S and C/S
application. This Widget is merely a 394KB
“*.htm” file containing a lot of HTML, JavaScript,
CSS codes and some resources. You can execute it
by opening the file with a general-purpose browse
(IE for example).
We calculate the information efficiency index of
our application in W/S with similar application in
B/S and C/S. The information efficiency E = H/D,
where H is the information quantity and D is the
total number of bits to transfer. According to

868

Shannon information theory, H = – � pi log(pi

,
),

where pi is the probability of each case. In the
temperature monitor system, the probability pi is
determined by both the probability of the place and
the conditional probability of temperature on that
place, that is pi = pi (place) pi (temperature|place).
D is measured by network traffic measurement
software.

Figure 4 The information efficiency index of B/S,
C/S and W/S

From the bar chart and the table, we can find that
the W/S architecture obtain great flexibility and
usability without great impact of the information
efficiency. B/S is light-weighted too, but not excels
information effective. C/S is the most information
effective, but it’s heavy-weighted.

Table 1 Comparison of B/S, C/S and W/S
 B/S C/S W/S
Not Need install Y N Y
Light weighted Y N Y
Information effective N Y Y

5 Conclusions and future work
This paper proposed a Widget/Server architecture.
The important and novel feature of our design is
that it makes use of the information flow while
keeps the flexibility of software. Thus, W/S
architecture can be used in lightweight software
development, especially mobile applications which
concern much about data transmission efficiency.
Since the Widget/Server architecture is merely
known, the number of applications based on W/S
architecture is quite small. However, it allows us to
conclude that many promising applications of this
architecture will come out. At present, we are
planning to build more applications to verify and
popularize this architecture and reveal these
applications to larger number of users.

Acknowledgements
This paper is supported by project “Broadband
Wireless Mobile Communication Network of Next
Generation” (No. 2008ZX03005), and project “The

Research and Industrialization of Broadband
Wireless Access” (No. 2010ZX03005-003).

References
[1] Zhang Junping, Zhu Xiaodong, Liang Xin.

C/S and B/S Mixed Style and the Application,
First International Workshop on Education
Technology and Computer Science, 2009.
March 2009, Vol. 2, pp. 682 - 686.

[2] Miao Huaikou, Sun Junmei, Cao Xiaoxia.
Formalizing and analyzing service oriented
software architecture style. INSPEC, Oct.
2006. pp. 387 – 390.

[3] R. N. Taylor, N. Medvidovic, K. M.
Anderson, J, et al. A Component- and
Message-Based Architectural Style for GUI
Software. 17th International Conference on
Software Engineering, 1995. April 1995, pp.
295.

[4] Jeongwon Baeg, Fukazawa Y. A dialog-
oriented user interface generation mechanism.
Proceedings of Asia-Pacific Software
Engineering Conference, 1996. pp. 310 – 317.

[5] M. Tribus, G. Fitts. The Widget Problem
Revisited, IEEE Transactions on Systems
Science and Cybernetics, Sept. 1968. Vol. 4,
Iss. 3, pp. 241 - 248.

[6] Mendes P., Caceres M., Dwolatzky B. A
review of the widget landscape and
incompatibilities between widget engines.
AFRICON, Sept. 2009. pp. 1 - 6.

[7] W. Willett, J. Heer J, and M. Agrawala,
“Scented widgets: Improving navigation cues
with embedded visualizations,” IEEE
Visualization Conference (Vis 2007) OCT
28-NOV 01, 2007 Sacramento, CA, vol.13(6),
pp. 1129-1136. P. Mendes, M. Caceres, B.
Dwolatzky. A review of the widget landscape
and incompatibilities between widget engines.
AFRICON, Sept. 2009. pp. 1 – 6.

[8] E. S. Ryu, J. S. Hwang, C. Yoo, “Widget
Integration Framework for context-aware
middleware,” 2nd International Workshop on
Mobility Aware Technologies and
Applications, OCT 17-19, 2005 Montreal,
Canada. Proceedings of Mobility aware
technologies and applications, lecture notes in
computer science, vol. 3744, pp. 161-171.

[9] Roy Thomas Fielding. Architectural Styles
and the Design of Network-based Software
Architectures, PhD dissertation, Dept. of
Computer Science, Univ. of California, Irvine,
Calif., 200

869

