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Abstract—This paper considers interactive transmissions in the
presence of omniscient Byzantine attacks. Unlike prior papers,
it is assumed that the number of transmissions, the number
of erroneous transmissions therein, and the direction of each
transmission are predetermined. Besides, the size of the alphabet
in each transmission is unequal and predefined. Using these
transmissions, two nodes communicate interactively to send a
message. In this model, both attack strategies and coding bounds
are considered. Although the codebook can not fully describe the
interactive code, we still assert the existence of successful attack
strategies according to the relations between codewords in the
codebook. Furthermore, to ensure that the code is able to detect
or correct a given number of transmission errors, upper bounds
on the size of code are derived. Finally, the tightness of the bounds
is discussed.

I. INTRODUCTION

Consider the interactive transmissions in the presence of
omniscient Byzantine adversaries (depicted in Fig. 1). Node
A tries to send a message to node B via n transmissions. Each
transmission is either from A to B or from B to A, and one let-
ter in the alphabet of the transmission is noiselessly transmitted
when the transmission is not attacked. The direction and the
alphabet of each transmission are predefined. The adversary
knows the message a priori, and maliciously modifies letters
in at most z transmissions, where the resulting letters are still
in the alphabets of the corresponding transmissions. At the
same time, A and B cooperate to execute an interactive code
to either correct or detect the adversary.
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Fig. 1. Interactive transmissions between A and B. Transmissions are denoted
by indexes 1, 2, . . . , n. The alphabet of transmission i is {0, 1, . . . , qi − 1}.
Other notations are defined in Section II.

Interactive coding can be used to combat transmission
errors. In [2]–[4], two nodes communicate interactively to
perform a task, and adversaries maliciously corrupt a con-
stant faction of transmissions. In these papers, the alphabet

Due to space limitations, the details of the proofs and related discussions
are presented in the extended version of this paper [1].

of transmissions is constant-sized, but the direction of each
transmission is designable. They derived a lower bound on the
proportion of erroneous transmissions that the code can correct
and an upper bound on the total number of transmissions
to guarantee the accomplishment of the task. Unlike these
works, the model in our paper predetermines all transmissions’
parameters, including the total number of transmissions, the
directions of each transmission, and the alphabets of each
transmission. We try to figure out how much information can
be sent via these transmissions.

The idea that uses redundant transmissions to detect or
correct errors is also called network error correction [5], [6].
Previous works showed that, linear network error correction
codes can attain the capacity of directed acyclic network
of unit-capacity links when repeated channel uses are al-
lowed [7]–[11]. However, [12]–[14] shows that linear code
does not suffice to achieve the capacity in general. In [12],
a kind of networks, called zigzag networks, were considered.
The topology of zigzag networks is similar to that in this paper,
since the communications in zigzag networks are essentially
interactive. Additionally, [12] showed that, for a network error
correction code, if two codewords match in a particular way,
the adversary can confuse the legitimate parties accordingly.
Furthermore, upper bounds on the capacity were derived using
contradiction: If the size of a network error correction code
is larger than an upper bound, according to the Pigeonhole
Principle, there exist two codewords such that the letters are
identical in some links, which results in the existence of
uncorrectable attacking scheme. In some zigzag networks, the
capacity can be attained by network error correction codes
such as “Guess and Forward” code.

In this paper, the transmitting and defending strategies of
the legitimate parties, henceforth simply called “code,” consist
of:

• Encoders: For any transmission, the encoder needs to de-
cide what to transmit according to the received letters. For
A, the message to send is also taken into consideration.

• Decoder: After the transmissions, the decoder in B maps
the letter sequence that B received to a message in the
message set, or reports error when it encounters errors
that are unable to be corrected.

The codeword is the transmitting letter sequence in all
transmissions when no transmissions are attacked. For a code,
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the set of all codewords is called codebook. In the cases that
all the transmissions are from A to B, the correction/detection
capability of a code is merely decided by the codebook.
Specifically, if the minimum Hamming distance of any two
distinct codewords in the codebook is dmin, the code can
correct arbitrary ⌊(dmin − 1)/2 ⌋ errors, or detect arbitrary
(dmin − 1) errors. However, this property generally no longer
holds when there exist transmissions from B to A, since the
codebook can not fully describe the code. The codebook can
only determine (1) what A is to transmit when all its previous
received letters are correct, and (2) what B is to transmit when
the previous received letter sequence matches some sequence
in the codebook. But in other cases, the letter sequence the
node receives may not match the entry/entries in the codebook,
so the codebook can not decide how to encode or decode after-
ward. However, subsequent encoding and decoding operations
do affect the error correction/detection capability. Therefore,
the codebook of an interactive code can not fully determine
the correction/detection capability.

Fortunately, it is also possible to identify some limitations
on the error correction/detection capability of a code merely
through the codebook. For example, if two codewords differ
only on the entry in the last transmission, which is a transmis-
sion from A to B, the code can neither detect nor correct one
error. The reason is, when the message associated with one
of the aforementioned codewords is being sent, the adversary
can maliciously change the letter in the last transmission to
what would be sent when the message associated with the
other codeword is sent. In this case, B is unable to detect
this modification. Therefore, it is also possible to assert that a
code is unable to correct (or detect) a given number of errors
merely by the codebook.

Let the term “the size of the code” denote the cardinality
of the message set of an interactive code. Obviously, the size
of the code is equal to the number of different codewords
in the codebook. As is known to all, feedback can increase
the capacity of memory channels. Similarly, the existence of
transmissions from B to A can enlarge the message set. For ex-
ample, in Fig. 2(a), there are four transmissions with alphabets
{0, 1}, {0, 1}, {0, 1}, and {0, 1, 2} respectively. The maximum
size of the code to correct one arbitrary error is three. That is
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(a) Four feedforward transmissions (size of 1-correctable code is 3)

(b) Six interactive transmissions (size of 1-correctable code is 4)

Fig. 2. Example of the benefit of feedback transmissions

because, in order to correct one error, the minimum distance
of any two distinct codewords in the codebook should be ≥ 3.
In [15, Proposition 4.1(v)], it is shown that, in such mixed
binary/ternary case, the maximum size of codes of minimum
distance ≥ 3 is three exactly. (One possible codebook is
{0000, 0111, 1012}.) Compared to Fig. 2(a), Fig. 2(b) has two
more transmissions from B to A, of which each transmits
one letter in {0, 1, 2, 3}. In Section IV-C of this paper, it is
proved that the maximum size of such 1-correctable code is
four. Therefore, the existence of transmissions from B to A
can increase the size of the code.

The contribution of this paper is twofold:
(1) Attacks to the Codebook: Although the codebook can

not fully determine the error detection/correction capability,
when the codebook has some properties, there still exist ways
to assert the existence of attack strategies to defeat the interac-
tive code. First, the equivalent definitions of error-detectable
codes and error-correctable codes are provided respectively.
Second, we show that if the entries in two distinct codewords
match in a particular way, there exists an attack strategy such
that B can not detect or correct the modification.

(2) Coding Bounds: We derive the upper bounds on the
size of interactive codes. Based on the existence of attack
strategies, it is shown that, if an interactive code can detect or
correct z malicious errors, the size of the code is not greater
than the given bound. Moreover, an example is presented to
discuss the tightness of the upper bounds.

Paper Outline: The remainder of the paper is organized as
follows: Section II introduces the system model. Section III
studies the existence of successful attack strategies. Section IV
derives the upper bounds on the size of error-detecting codes
and error-correcting codes. Section V concludes the paper.

Notation: Let N be the set of natural numbers. Some
basic notations are defined in Table I. Other notations, such
as [i1, i2) and Xi2

− , can be defined similarly. For any set
I ⊆ [1, n], let |I| denote the number of elements therein.

TABLE I
SOME NOTATIONS

(i1, i2 ∈ N, I ⊆ N, AND {X1, · · · , Xn} IS A SEQUENCE.)

[i1, i2] = {i ∈ N : i1 ≤ i ≤ i2}
(i1, i2] = {i ∈ N : i1 < i ≤ i2}
[i1, i2]+ = {i ∈ [i1, i2] : si = +1}

I+ = {i ∈ I : si = +1}
Xi2

i1
= {Xi : i ∈ [i1, i2]}

Xi2 = {Xi : i ∈ [1, i2]}
XI = {Xi : i ∈ I}

Xi2
i1+

=
{
Xi : i ∈ [i1, i2]+

}
Xi2

+ =
{
Xi : i ∈ [1, i2]+

}
II. PRELIMINARIES

There are n transmissions in total. All transmissions are
indexed and denoted by {1, 2, · · · , n} in succession. For the
ith transmission, its direction si is defined as

si =

{
+1, transmission i is from A to B

−1, transmission i is from B to A.
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Fig. 3. Block diagram.

The alphabet of this transmission is {0, 1, · · · , qi − 1}. The
corresponding transmitted letter and the received letter are Xi

and Yi respectively.
For two sequences XI and YI , the Hamming distance of

these two sequences is

dH (XI , YI) = |{i ∈ I : Xi ̸= Yi}| .

Let M be the message set. A message M ∈ M needs to
be transmitted from A to B. A, which is on the left side of
the channel in Fig. 3, knows the message M and consists of:

• Encoder for transmission i such that si = +1: Xi =
xi

(
Y i−1
− ,M

)
.

B, which is on the right side of the channel in Fig. 3, tries to
recover the message and consists of:

• Encoder for transmission i such that si = −1: Xi =
xi

(
Y i−1
+

)
, and

• Decoder: M̂ = m̂
(
Y n
+

)
, where M̂ ∈ M

∪
{ε}, and ε

indicates an error symbol that does not belong to M.
The adversary knows the code (xn and m̂) and the message

(M ) a prior and can maliciously change at most z letters:

dH (Xn, Y n) ≤ z.

Definition 1 (z-correctable): A code is z-correctable iff
M̂ = M always holds when dH (Xn, Y n) ≤ z.

Definition 2 (z-detectable): A code is z-detectable iff (1)
when dH (Xn, Y n) ≤ z, M̂ = M or M̂ = ε; (2) when
Xn = Y n, M̂ = M .

III. ATTACKS TO CODEWORDS

Recall that, the codeword of a message m is the letter
sequence that all transmissions transmit when no errors occur
(denoted as cn). This section will show that, if two distinct
codewords satisfy some conditions, we can constructively
prove the existence of attack strategies to defeat the code.

A. Attack Error-Detecting Codes

To attack an error-detecting code, the adversary needs to
modify the transmissions, so that the letter sequence received
by B is equal to what B should receive when another message
is to be sent. For example, if the adversary wants to fool B
when A tries to transmit message m, the adversary needs to

find another message m̄, whose codeword is c̄n, and modifies
some transmissions to let B receive c̄n+. If he succeeds, B
will decode c̄n+ as m̄ without detecting any modifications.
Accordingly, we can reinterpret z-detectable codes as follows:

Proposition 1 (z-Detectable Code, Theorem 2 of [16]): A
code is an z-detectable code only if for any two distinct mes-
sages m, m̄ ∈ M (m ̸= m̄), for any malicious modification of
message m transmitting such that dH (yn, xn) ≤ z, and any
malicious modification of message m̄ transmitting such that
ȳn = x̄n, we have yn+ ̸= ȳn+.

In Proposition 1, for the transmissions of message m̄, the
requirement that ȳn = x̄n actually means no modifications.
Using this proposition, we can derive the following theorem:

Theorem 1 (Not z-Detectable Code): For an interactive
code, cn and c̄n are the codewords of two different messages.
If there exists an integer n′ ∈ [0, n] such that

dH

(
cn

′
, c̄n

′
)
+
∣∣(n′, n]+

∣∣ ≤ z, (1)

then the code is not z-detectable.
Proof Outline: Let Ia+ =

{
i ∈ [1, n′]+ : ci ̸= c̄i

}
and

Ia− =
{
i ∈ [1, n′]− : ci ̸= c̄i

}
. (1) leads to

|Ia+|+ |Ia−|+
∣∣(n′, n]+

∣∣ ≤ z.

When A wants to send the message corresponding to cn, the
adversary changes the letters in Ia+ from cIa+

to c̄Ia+
, the

letters in Ia− from c̄Ia− to cIa− , and the letters in (n′, n]+ to
c̄nn′+1,+. Then, what B receives is exactly c̄n+. Consequently,
B decodes the received letters as m̄ without detecting the
modifications.

In this theorem, all transmissions are divided into two
phases (See Fig. 4). The comparisons of entries matter in
the transmissions [1, n′], while the directions of transmissions
matter in the transmissions (n′, n]. This partition is according
to whether A is allowed to detect the adversarial errors. In
the first phase, A is unable to detect the errors, while in the
second phase, he is. In this sense, such partition is without
loss of generality.
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Fig. 4. Divide all transmissions into two phases: [1, n′] and (n′, n].

B. Attack Error-Correcting Codes
The analysis for error-correction codes is similar to that for

error-detection codes. The equivalent characterization of the
z-correctable codes is:

Proposition 2 (z-Correctable Code, Theorem 1 of [16]): A
code is an z-correctable code only if for any two distinct mes-
sages m, m̄ ∈ M (m ̸= m̄), for any malicious modification
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of message m transmitting such that dH (yn, xn) ≤ z and any
malicious modification of message m̄ transmitting such that
dH (ȳn, x̄n) ≤ z, we have yn+ ̸= ȳn+.

The proposition tells us, for an interactive code, if there exist
two distinct messages m, m̄ such that the adversary can make
B receive the same sequence in transmissions [1, n]+ when
either of messages is being transmitted, node B has no way
to tell which message of these two are the original message.
Thus, B is unable to recover the message in this case, and this
interactive code can not correct the adversarial errors.

Theorem 2 (Not z-Correctable Code): For an interactive
code, cn and c̄n are the codewords of two different messages.
If there exist integers n′ ∈ [0, n] and n′′ ∈ [0, n′] such that
|Ia| ≤ z,

∣∣Īa∣∣ ≤ z, and

|Ia|+
∣∣Īa∣∣+ ∣∣(n′, n]+

∣∣ ≤ 2z

where

Ia = {i ∈ [1, n′′] : ci ̸= c̄i}
∪

(n′′, n′]−,

Īa = {i ∈ (n′′, n′] : ci ̸= c̄i}
∪

(n′′, n′]−,

then the code is not z-correctable.
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In this theorem, all transmissions are divided into three
phases (See Fig. 5). The comparisons of entries matter in
the transmissions [1, n′′]; both the comparisons of entries and
the directions matter in the transmissions (n′′, n′]; and the
directions matter in the transmissions (n′, n]. This partition is
according to whether A and B detect the errors. Specifically,
A is not allowed to detect the adversarial errors in both the
first and the second phase, and B is not allowed to detect in
merely the first phase. Such partition assumes that B detects
the errors earlier than A. In fact, this assumption is without
loss of generality: If A detects the errors before B, subsequent
transmissions from A to B are not defined by codewords and
need to be modified. At the time, it does not matter whether
B detects the errors or not.

IV. CODING BOUNDS

Recall that the size of code is defined as the cardinality of
message set of an interactive code. In this section, we consider
the upper bounds on the size of interactive codes that can
detect/correct arbitrary z adversarial errors.

A. Bounds on the Size of Error-Detecting Codes

Theorem 3 (z-Detectable Bound): The maximum size of
z-detectable codes is upper bounded by

A
(z,0)
sn◦qn ≤ min

n′∈[0,n]:|(n′,n]+|≤z
Q

(
z−

∣∣∣(n′,n]
+

∣∣∣)
sn′◦qn′

where Q
(z)

s
i2
i1

◦qi2i1
is defined in (2) (See the bottom of the page).

Proof Outline: First, we use contradiction to show that,
for any n′ ∈ [0, n] and Ia ⊆ [1, n′] such that
(1) |Ia|+

∣∣(n′, n]+
∣∣ ≤ z, and

(2) sia = +1, where ia = min
i∈Ia

i,

the size of any z-detectable codes is not greater than

A
(z,0)
sn◦qn ≤

∏
i∈IEQ

qi,

where
IEQ = [1, ia)+

∪
([ia, n

′] \Ia) .

Consider an interactive code. If its size is greater than∏
i∈IEQ

qi, due to the Pigeon Principle, there are two code-
words cn and c̄n for distinct messages such that cIEQ = c̄IEQ .
Since cia−1

+ = c̄ia−1
+ , B can not distinct the difference

between the two messages before the (ia − 1)th transmission.
Therefore, cia−1 = c̄ia−1, and

dH

(
cn

′
, c̄n

′
)
= |Ia| .

Consequently, we have

dH

(
cn

′
, c̄n

′
)
+

∣∣(n′, n]+
∣∣ = |Ia|+

∣∣(n′, n]+
∣∣ ≤ z.

According to Theorem 1, the interactive code is not z-
detectable. Thus, the size of all z-detectable codes is upper
bounded by

∏
i∈IEQ

qi. Then Theorem 3 is obtained by mini-
mizing

∏
i∈IEQ

qi over all possible IEQ.
In this theorem, all transmissions are also partitioned into

two phases. Only the first phase contributes the coding bound.
Especially, there is also a transmission ia that further divides
the first phase into two parts. In the first part, all transmissions
from A to B contribute to the coding bound; in the second
phase, a limited number of transmissions contribute.

Q
(z)

s
i2
i1

◦qi2i1
=


∏

i∈[i1,i2]+

qi, z = 0

min
ia∈[i1,i2]+

∏
i∈[i1,ia)+

qi · min
I∗⊆(ia,i2]:|I∗|<z

∏
i∈(ia,i2]\I∗

qi, z > 0
(2)
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B. Bounds on the Size of Error-Correcting Codes

Similar to the case for error-detecting codes, the size of
error-correcting codes are upper bounded by the following
theorem:

Theorem 4 (z-Correctable Bound): The maximum size of
z-correctable codes is upper bounded by

A
(z,z)
sn◦qn ≤ minQ

(z′′)
sn′′◦qn′′P

(z′)
sn

′
n′′+1

◦qn′
n′′+1

(3)

where the minimum is over all n′ ∈ [0, n] , n′′ ∈ [0, n′] such
that

2
∣∣(n′′, n′]−

∣∣+ ∣∣(n′, n]+
∣∣ ≤ 2z,

and all z′, z′′ ∈
[
0, z −

∣∣(n′′, n′]−
∣∣] such that

z′ + z′′ ≤ 2z − 2
∣∣(n′′, n′]−

∣∣− ∣∣(n′, n]+
∣∣ .

In the inequality (3), Q(z)

s
i2
i1

◦qi2i1
is defined in (2) and

P
(z)

s
i2
i1

◦qi2i1
= min

I∗⊆[i1,i2]+:|I∗|≤z

∏
i∈[i1,i2]+\I∗

qi.

In this theorem, all transmissions are partitioned into three
phases and the first two phases contribute to the coding bound.
The first phase is further divided in a way that is identical to
that in Theorem 3, resulting in the same Q

(z)

s
i2
i1

◦qi2i1
function. In

the second phase, a limited number of transmissions from A
to B contribute to the value of the bound.

C. Tightness of Bounds

Finding the exact value of the maximum size of code is an
intractable problem. At least, this problem is more complex
than finding the exact value of A2 (n, d), the maximum size
of binary block codes with length n and minimum distance
d. However, the bounds in this paper are indeed tight in some
cases.

For example, for 1-correctable codes in Fig. 2(b), letting
n′ = n′′ = 2 and z′ = z′′ = 0, we have

Q
(0)
s2◦q2 =

∏
i∈[1,2]+

qi = 4

P
(0)

s23◦q23
= 1.

Therefore, our error-correcting bound reduces to

A
(1,1)
2,2,−4,2,−4,3 ≤ 4.

At the same time, we can construct an interactive code of size
4 [1]. Therefore, the upper bound is tight in this case.

V. CONCLUSION

This paper considered the coding in finite interactive trans-
missions in the presence of omniscient adversary. When the
codebook and the number of possible error transmissions
satisfy some conditions, we can assert that the code is unable
to detect or correct the errors. Furthermore, upper bounds
on the size of code are derived. An example is provided to
illustrate the tightness of the bound.
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