
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015 2605

Allocation of Network Error Correction
Flow to Combat Byzantine Attacks

Zhiqing Xiao, Yunzhou Li, Member, IEEE, Ming Zhao, Member, IEEE,
Xibin Xu, Member, IEEE, and Jing Wang, Member, IEEE

Abstract—This paper studies the allocation of information flows
in noiseless, memoryless communication networks in the presence
of omniscient Byzantine adversary. In such networks, adversary
may maliciously modify some edge-flows, and legitimate users
should resort to network error correction strategies to transmit
data reliably. Unlike prior papers, which focused on the capacities
of the networks, we consider the expense of resources used by the
flow. Hereby, this paper uses an optimization problem to define
the concept of minimum cost network error correction flows.
We provide a necessary and sufficient condition of feasibility of
the allocation problem, and derive a cut-set outer bound on the
feasible region. Using this cut-set bound, we can find the minimum
cost network error correction flow in some instances. Moreover,
we also consider the relationship between incoming edge-flows
and outgoing edge-flows of a vertex. As for the directed acyclic
graphs, we propose an algorithm to allocate the network error cor-
rection flow. This algorithm is with polynomial time complexity,
and proves to be optimal when recoding at intermediate nodes is
forbidden. Additionally, in order to justify the necessity of recod-
ing at intermediate nodes, we analyze the benefit of intermediate
recoding. On the one hand, we construct a series of instances to
prove that intermediate recoding can bring enormous benefits in
some networks. On the other hand, numerical analysis shows that
the benefit is modest in small random graphs.

Index Terms—Adversarial errors, Byzantine adversary, net-
work error correction, cut-set bound, resource allocation, mini-
mum cost.

I. INTRODUCTION

N ETWORK-LEVEL redundancy can be used to combat
attacks on malicious nodes and links in communication

networks with potential adversaries. Similar to the usage of
link-level error correction codes to rectify errors within point-
to-point transmissions, network error correction codes have
been proposed to combat the link adversarial errors [1]–[5] and
node adversarial errors [6]–[8] in networks.

Manuscript received October 8, 2014; revised April 3, 2015; accepted
May 21, 2015. Date of publication June 1, 2015; date of current version
July 13, 2015. This work was supported by the National Basic Research
Program of China (973 Program) under Grant 2013CB329002, the National
High Technology Research and Development Program of China (863 Program)
under Grant 2014AA01A703, the National S&T Major Project under Grant
2013ZX03004007, and the Program for NCET in University under Grant
NCET-13-0321. The associate editor coordinating the review of this paper and
approving it for publication was A. Ramamoorthy.

Z. Xiao is with the Department of Electronic Engineering, Tsinghua Univer-
sity, Beijing 100084, China (e-mail: xzq.xiaozhiqing@gmail.com).

Y. Li, M. Zhao, X. Xu, and J. Wang are with Research Institute of Information
Technology, Tsinghua University, Beijing 100084, China (e-mail: liyunzhou@
tsinghua.edu.cn; zhaoming@tsinghua.edu.cn; xuxb@tsinghua.edu.cn; wangj@
tsinghua.edu.cn).

Digital Object Identifier 10.1109/TCOMM.2015.2438811

Before network coding was proposed, one important way to
defeat adversarial errors was to find several disjoint paths to
provide diversity [9]. When the adversary intercepts and forges
some edge-flows maliciously, the edge-flows in reliable paths
can help correct the errors.

In [10], network coding was first used to correct errors.
Byzantine attacks on random linear network coding were con-
sidered in [11] and [12]. Some coding bounds of network error
correction codes were derived in [10], [13], and [14]. In the
cases that the flow on each link is equal and the adversary
can seize any z edges in the network, construction algorithms
of linear network error correction codes to attain the refined
Singleton bound were proposed in [14]–[16]. These results
showed that, for the network error correction flow with equal
flow on each edge, its capacity, defined as the supremum of all
achievable message rates, is fully determined by the minimum
cardinality of cuts, the number of adversarial links, and the
quantity of the equal edge flow.

The network error correction flow with unequal flow on every
link was first considered in [3]. In [3], the adversary can attack
arbitrary z links among a network. It derived the capacity of
the network error correction flow in two-node networks, which
provided the tightest upper bound among all bounds that depend
only on cuts. It further took the connection relationship among
edges within cuts into consideration, and provided a bound that
is sometimes tighter than the aforementioned cut-set bound. It
also showed that this bound can be attained by a strategy called
“Guess and Forward” in some four-node acyclic networks and
some zigzag networks. After that, the relationship between
the feedback edge-flow and the overall capacity in four-node
acyclic networks was further studied in [17]. To guarantee
the message transmission at a given rate in four-node acyclic
networks, some bounds on the feasible range of the feedback
edge-flow were obtained in [3, Section V-B] and [17].

Previous studies focused on characterizing the capacity of the
network error correction flow. Unlike prior papers, we focus
on the resource usage of network error correction flows. For
a given network topology, a given message rate to attain, and
all possible attacked link combinations, there may exist many
different ways to allocate network error correction flow. Among
those options, some network error correction flows are better
since they use less network resources than others. Therefore,
we need to study the minimum cost allocation of network error
correction flows.

Example 1: In Fig. 1 (a) and (b), the flow on every edge is
identical (denoted by f0) and the adversary can attack arbitrary
one link. The capacities in both networks are 2f0 [14]. However,

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2606 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Fig. 1. Two network error correction flows with equal edge-flow on every link.
(a) a network error correction flow on 6 + 16 + 4 = 26 edges; (b) a network
error correction flow on 4 + 4 + 4 = 12 edges.

the flow in Fig. 1(a) uses more network resources and ag-
gravates more burden than Fig. 1(b). Therefore, the flow in
Fig. 1(b) is a better choice.

Cost-based network coding was considered in [18]–[20]. All
these works first formulated their problems with a general cost
function, but started the analysis with a very simple cost func-
tion. In [18] and [19], the cost functions are the inner product
of the edge-rate and the cost per unit edge-rate. In [20], the cost
is the edge-rate itself. Actually, such linear cost functions are
the simplest and the most easily to be thought of, and suffice to
provide intuitions for more complex cost functions.

Our previous work [21] studied the allocation of network
error correction flow on disjoint paths with the linear cost
functions. In [21], we proposed an algorithm to allocate the
flow in the networks that consist of disjoint paths only. This
algorithm proved to be optimal, and the time complexity is
O(|P| log |P|), where |P| is the number of paths in the network.

In contrast, this paper allows the recoding at intermediate
nodes. In fact, for a network where the capacity of each edge is
infinite, if there exists a flow that requires intermediate recoding
to attain a predefined rate, there must exist another flow without
recoding at intermediate nodes such that it can achieve the
same rate in the same network. That is, whether intermediate
nodes do recoding or not does not affect the feasibility of
resource allocation problem. Moreover, it can be noticed that
some optimal flows do not need to recode at intermediate nodes
(for example, the case of Example 1). Therefore, the benefit
brought by recoding should be evaluated to justify the necessity
of intermediate recoding.

Our contributions are as follows:

1) We formulate the problem of allocating network error
correction flow, and discuss the feasibility of this prob-
lem. We introduce the Cost function into the system,
and model the network error correction flow allocation
problem as an optimization problem. We further inves-
tigate the shape of the feasible flow region, and find
that the feasible region is unbounded and convex. In this
sense, the feasible flow region is merely determined by its
supporting hyperplanes.

2) We use a cut-based approach to analyze the feasible
region. On the one hand, we derive a cut-based neces-
sary and sufficient condition for the feasible region to
be nonempty, which indicates that the feasibility of the
allocation problem is merely decided by the network

topology and the adversaries. On the other hand, we
derive a cut-set outer bound on the feasible flow region
and discuss its tightness. By proving that the cut-set
outer bound is tight in a kind of two-node networks, we
show that our cut-set outer bound is the tightest bound
among all cut-based outer bounds on feasible region.
Additionally, we also provide a counterexample to show
that the cut-set outer bound is not tight in general.

3) We use the aforementioned cut-set outer bound to relax
the original flow allocation problem into a linear pro-
gramming, and try to find the minimum cost network
error correction flow. Examples show that, although the
cut-set outer bound is not tight in general, this relax-
ation suffices to obtain the minimum cost network error
correction flow in many cases. We further discuss the
relationship between the tightness of this relaxed problem
and the tightness of the cut-set outer bound. Additionally,
we use the idea of informational dominance to extend
the classical flow conservation law for the minimum cost
network error correction flow, which sometimes provides
a tighter bound.

4) We propose a route-based flow allocation algorithm in
directed acyclic network. The result of this algorithm is
optimal among all flow allocation strategies that forbid
recoding at intermediate nodes. The time complexity of
this algorithm is O

(|V|2|E |), where |V| is the number of
vertices in the network and |E | is the number of edges in
the network.

5) We investigate the benefit of recoding at intermediate
nodes. On the one hand, we construct a suite of cases to
show that intermediate recoding is able to bring tremen-
dous benefit (when the size of the network is large), which
justifies the necessity of the intermediate recoding. On the
other hand, we use numerical evaluation to analysis the
benefit in small random networks. The result shows that
the benefit in small random networks is modest. An in-
creasing need of intermediate recoding is also suggested
as the size of the network grows.

Paper Outline: Section II formulates the flow allocation
problem and investigates the properties of the feasible region.
Section III considers the feasibility of the problem. Section IV
derives a cut-set outer bound on the feasible region, and dis-
cusses the tightness of the bound. Section V shows how to
find the minimum cost flow using the cut-set bound in some
cases. Section VI considers the topology around a vertex, and
gives an approach to tighten the cut-set bound. Section VII
proposes a route-based flow allocation algorithm in directed
acyclic network. Section VIII discusses the benefit of recoding
at intermediate nodes. Section IX draws the conclusion.

Notations: Calligraphic letters (such as X and Y) represent
sets and single vertical bars enclosing the sets (such as |X |
and |Y|) are their cardinality. N is the set of natural numbers.
For a set X and an integer i ∈ N, define P(X , i) = {X1 ⊆ X :
|X1| ≤ i} and P(X) = {X1 : X1 ⊆ X }. For an element x ∈ X
and a set Y , let xY = {xy : y ∈ Y} and x + Y = {x + y : y ∈
Y}. Boldface letters (such as xI = (xi : i ∈ I)) present indexed
lists, whose index sets are denoted by their subscripts. The
length of list xI is |xI |. Let 0I and 1I be the lists such that

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2607

all entries therein are zero and one respectively. An inequality
between two lists xI and yI holds if and only if the inequal-
ity xi ≥ yi hold for every i ∈ I. For lists xI , yI ≥ 0I , define
‖xI‖1 = ∑

i∈I xi and 〈xI , yI〉 = ∑
i∈I xiyi.

II. PROBLEM FORMULATION

This paper focuses on link-based attacks in memoryless,
noiseless communication networks with a single source node
and a single sink node.

In this paper, the network is defined as a directed graph
G = (V, E). For any node v ∈ V , let In(v) and Out(v) be the
set of incoming and outgoing edges of this vertex respectively.
For any directed edge e, let Tail(e) and Head(e) be the initial
vertex and the terminal vertex of the edge respectively. Let
{xe,1, xe,2, · · · } and {ye,1, ye,2, · · · } be the input sequence and
the output sequence of the edge e, respectively.

In the process of communication, a message needs to be
transmitted from a source node vs ∈ V to a sink node vt ∈ V .
All nodes in the network cooperate to transmit the message and
combat the adversary, and the cooperation scheme is revealed to
all parties, including all nodes in the network and the adversary.
In addition, the source node vs and the adversary know the
message to be transmitted beforehand.

Although the adversary knows the message to be transmitted
and the defending scheme in advance, it can only dominate
a portion of edges. Let A (A � P(E)) be the set of possible
edge sets that the adversary may control. The attacked edge set
Ea ∈ A is fixed during the communication. However, before the
communication, the legitimate nodes do not know which set
in A is the one that the adversary controls. This error model
addresses the worse worst-case scenario (also seen in [22],
[23]).

When the flow on edge e is fe, a symbol in the alphabet
{1, · · · , 2Nfe} can be transmitted in N channel uses, where N
is usually assumed to be a very large positive integer [3], [7].
Accordingly, a network error correction flow, henceforth simply
called flow and denoted by fE = (fe : e ∈ E), is a list of edge-
flow on E . (Note that, different from the classical network flow,
the summation of flows into an intermediate vertex vi may be
unequal to the summation of flows leaving vi. See Section VI-A
for details.) For the sake of simplicity, this paper does not set
an upper bound on the edge flows, i.e., each entry in fE = (fe :
e ∈ E) can be arbitrarily large.

Network error correction codes can be constructed on the
network error correction flow. Let R ≥ 0 denote the rate of a
code. A (2NR, N) network error correction code consists of

• a message set: M = {1, · · · , 2NR};
• a set of source encoders, where encoder e ∈ Out(vs)

assigns a symbol xe,i to each message m ∈ M and vs’s re-
ceived sequences (yi−1

e : e ∈ In(vs)) for i ∈ {1, · · · , N};
• a set of recoders, where recoder e ∈ E\Out(vs) assigns

a symbols xe,i to each Tail(e)’s received sequences(
yi−1

e : e ∈ In(Tail(e))
)

for i ∈ {1, · · · , N};
• a decoder that assigns an estimate m̂ to each vt’s received

sequences
(
yN

e : e ∈ In(vt)
)
.

A
(
2NR, N

)
network error correction code is on flow fE iff

xN
e , yN

e ∈ {
1, · · · , 2Nfe

}
for every e ∈ E .

A
(
2NR, N

)
network error correction code is A-error-

correcting iff it satisfies the following property: For every edge
set Ea ∈ A, if yN

e = xN
e holds for all e ∈ E\Ea, then m̂ = m.

Fix a rate R and the adversary A. A flow fE ≥ 0E is a feasible
flow if there exists an A-error-correcting

(
2NR, N

)
network

error correction code on the flow fE . Let FR,A be the closure
of the set of all such feasible flows.

Legitimate users want to use resources as few as possible.
Thus, a function from a flow to a non-negative real, called
“Cost”, is introduced to measure the resources in use. For
the sake of simplicity, this paper only considers linear cost
functions, whose form is inner product of the unit price and
the flow of edges (shown as

Cost(fE) = 〈ψE , fE 〉 =
∑
e∈E

ψefe,

where ψE ≥ 0E is the unit price of every edge). The minimum
cost network error correction flow is the flow that minimizes
the cost:

Definition 1 (Minimum Cost Network Error Correction
Flow): Use the notations in the preceding contexts. The min-
imum cost network error correction flow is the optimal solution
of the optimization problem:

minimize Cost(fE)

over fE

s.t. fE ∈ FR,A (1)

The feasible region of this problem is exactly FR,A. Some
characteristics of this region include:

Proposition 1 (Shape of Feasible Region): Given the network
G = (V, E). A is an adversary set and R > 0 is the rate. Then

1) (Homogeneity) For any λ > 0, FλR,A = λFR,A;
2) (Unboundedness) For any fE ≥ 0E , FR,A + fE ⊆ FR,A;
3) (Convexity) FR,A is convex.

Proof: See Appendix B.1 �
Since FR,A is convex and this paper only considers linear

cost function, this optimization problem is a convex optimiza-
tion problem. However, no exact characterizations of FR,A have
been derived so far, so the mathematical expression of the fea-
sible region is still unknown. Consequently, this optimization
problem can not be solved by using conventional optimization
techniques.

III. FEASIBILITY

This section discusses the feasibility of the flow allocation
problem. We will show that the feasibility is merely determined
by the network topology and the adversary.

1Seen from another angle, characterizing F is a source coding problem,
where the rate R is the conventional source rate (usually denoted as H(U) in
literatures), and the set F is the conventional admissible rate region (usually
denoted as R in literatures). So it is not surprising that Proposition 1 is true.

2608 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Let Vs be a set of vertices such that vs ∈ Vs and vt /∈ Vs.
A source-sink cut (a.k.a. forward edge set) between Vs and
V\Vs is defined as EF

c (Vs) = {e ∈ E : Tail(e) ∈ Vs, Head(e) /∈
Vs}, while a sink-source cut (a.k.a. backward edge set) be-
tween V\Vs and Vs is defined as EB

c (Vs) = {e ∈ E : Tail(e) /∈
Vs, Head(e) ∈ Vs}. A cut between Vs and V\Vs (bidirectional
cut) is defined as Ec(Vs) = EF

c (Vs)
⋃

EB
c (Vs).

Theorem 1 (Feasibility): Fix G, A and R > 0. FR,A = ∅
if and only if there exist E (1)

a , E (2)
a ∈ A and a source-sink cut

EF
c ⊆ E such that EF

c ⊆ E (1)
a

⋃
E (2)

a .
In order to prove Theorem 1, we hereby provide some

lemmas in the sequel:
Lemma 1: Fix G, A, and F . If there exist E (1)

a , E (2)
a ∈A and a

source-sink cut EF
c ⊆E such that EF

c ⊆E (1)
a

⋃
E (2)

a , then R = 0.
Let P be the set of all possible paths2 (without loop) from

the source node vs to the sink node vt. For a path p ∈ P , let Ep

be the set of edges along which path p goes. For an edge set
Ea ∈ A, let

PEa =
{

p ∈ P : Ep

⋂
Ea 	= ∅

}
. (2)

Lemma 2: Fix E (1)
a , E (2)

a ⊆ E . PE (1)
a

⋃
E (2)

a
= PE (1)

a

⋃
PE (2)

a
.

Lemma 3: Fix Ea ⊆ E . If EF
c 	⊆ Ea holds for every source-

sink cut EF
c , there exists a path p ∈ P such that p /∈ PEa .

The proof of Lemma 3 can be found in Appendix C.
Proof of Theorem 1: (1) Due to Lemma 1, when there ex-

ist such E (1)
a ,E (2)

a , and EF
c , we have R=0. Therefore, FR,A=∅.

(2) Now we use a proof by contradiction to show that there
exist such E (1)

a , E (2)
a , and EF

c when FR,A = ∅.

Suppose for arbitrary E (1)
a , E (2)

a ∈ A and every source-sink
cut EF

c , we have EF
c 	⊆ E (1)

a
⋃

E (2)
a . That is, for arbitrary

E (1)
a , E (2)

a ∈ A and every source-sink cut EF
c , there exists an

edge e such that e ∈ EF
c and e /∈ E (1)

a
⋃

E (2)
a . According to

Lemma 2 and Lemma 3, for arbitrary E (1)
a , E (2)

a ∈ A, there
exists a path p /∈ PE (1)

a
⋃

E (2)
a

= PE (1)
a

⋃
PE (2)

a
, i.e., p /∈ PE (1)

a
and

p /∈ PE (2)
a

. Let p̄E (1)
a ,E (2)

a
denote this path.

Given Ea ∈ A, let P̄Ea =
{

p̄Ea,E (2)
a

: E (2)
a ∈ A

}
. For an arbi-

trary E (2)
a ∈ A, due to p̄Ea,E

(2)
a

∈ P̄Ea and p̄Ea,E
(2)
a

/∈ PE (2)
a

, we

have P̄Ea 	⊆ PE (2)
a

.
Consider the following network error correction code: For

each path p ∈ P , send the message directly. That is, the mes-
sage is repeatedly sent |P| times. According to the above
analysis, on the one hand, since at most one set within A is
controlled by the adversary, there exists a set of paths, say P̄Ea ,
that are not controlled by the adversary; on the other hand,
no adversary can totally change the signals in P̄Ea . Therefore,
the sink node can always find a set of paths P̄Ea (Ea ⊆ A)

where the received signals are both identical and correct. In
this way, we have constructed a code that supports rate R and
combats adversary A simultaneously. It contradicts FR,A = ∅
and completes the proof. �

2Here, the stand-alone symbol P denotes the set of paths from vs to vt ,
which differs from the uniary/binary function (in the form of P(X) or P(X , i))
defined in Section I.

IV. CUT-SET BOUND ON FR,A

A. Cut-Set Outer Bound on Feasible Region

This section considers an outer bound on the feasible region
FR,A, which uses a cut Ec with forward edge set (source-sink
cut) EF

c ⊆ Ec and backward edge set (sink-source cut) EB
c ⊆ Ec

to restrict the feasible region FR,A.
Theorem 2 (Cut-set Outer Bound): Given R > 0 and A �

P(E) in a network G = (V, E). Let Ec ⊆ E be a cut in the
network, and its forward edge set is EF

c and its backward edge
set is EB

c . Define

B(1)
R,A

(
EF

c

) =
⋂
Ea∈A

{
fE ≥ 0E : ‖fEF

c \Ea
‖

1
≥ R

}
,

B(2)
R,A

(
EF

c , EB
c

)=
⋂

E (1)
a ∈A:EB

c ⊆E (1)
a

E (2)
a ∈A:EB

c ⊆E (2)
a

{
fE�0E:

∥∥∥∥fEF
c \

(
E (1)

a
⋃

E (2)
a

)∥∥∥∥
1
≥R

}
,

and

BR,A(Ec)=
{
∅, if ∃E (1)

a , E (2)
a ∈ A such that EF

c ⊆E (1)
a

⋃
E (2)

a

B(1)
R,A

(
EF

c

) ⋂
B(2)

R,A
(
EF

c , EB
c

)
, otherwise,

then

FR,A ⊆ BR,A(Ec).

The proof of Theorem 2 is provided in Appendix D.
Interpretation of the Cut-Set Outer Bound: This cut-set

bound tells us, when there exist E (1)
a , E (2)

a ∈ A such that EF
c ⊆

E (1)
a

⋃
E (2)

a , FR,A is an empty set; otherwise, FR,A is bounded
by both B(1)

R,A
(
EF

c

)
and B(2)

R,A
(
EF

c , EB
c

)
. The set B(1)

R,A
(
EF

c

)
can

be understood as follows: Consider a feasible flow fE ∈ FR,A
and an edge set Ea ∈ A. When the adversary controls Ea, the
edge flow on Ea does not help the communication. In this sense,
the remaining flow, i.e. fE\Ea , should be able to support the
communication. In this sense, the rate R can not exceed the
summation of flow fE\Ea on the forward cut EF

c , which results in∥∥∥fEF
c \Ea

∥∥∥
1

≥ R.

Similarly, the set B(2)
R,A

(
EF

c , EB
c

)
can be understood as follows:

Consider a cut Ec(Vs) = EF
c

⋃
EB

c . If there are no Ea ∈ A
such that EB

c ⊆ Ea, B(2)
R,A

(
EF

c , EB
c

) = {fE : fE ≥ 0E } is a trivial

bound. If there exists a unique Ea ∈ A such that EB
c ⊆ Ea,

B(2)
R,A

(
EF

c , EB
c

) =
{

fE ≥ 0E : ‖fEF
c \Ea

‖
1

≥ R
}

is a subset of

B(1)
R,A

(
EF

c

)
, which is trivial too. If there are multiple Ea ∈ A

such that EB
c ⊆ Ea, let E (1)

a , E (2)
a denote two different such

sets. Either of the two sets is able to completely forbid any
meaningful information from V\Vs to Vs. Therefore, the flow
on EF

c shall use a forward error correction code to ensure the
correctness of the communication, which requires∥∥∥∥fEF

c \
(
E (1)

a
⋃

E (2)
a

)∥∥∥∥
1

≥ R.

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2609

Fig. 2. A two node network.

Now we consider a simplified case that the adversary cor-
rupts the symbols on arbitrary z edges (z∈N). Let A=P(E, z),
and the cut-set outer bound reduces to [3, Theorem 2]

BR,P(E,z)(Ec)

=

⎧⎪⎨
⎪⎩
∅,

∣∣EF
c

∣∣ ≤ 2z{
fE ≥ 0E : min

Ea∈P(EF
c ,nz)

∥∥∥fEF
c \Ea

∥∥∥
1

≥ R

}
, otherwise,

(3)

where

nz = max
{

z, 2
(
z − ∣∣EB

c

∣∣)+}
. (4)

B. Tightness of the Cut-Set Outer Bound

Let BR,A denote the outer bound obtained by applying The-
orem 2 in all cuts, i.e.,

BR,A =
⋂

Vs⊆V :vs∈Vs,vt /∈Vs

BR,A (Ec(Vs)) .

This subsection discusses whether FR,A = BR,A.
According to Theorem 1 and Theorem 2, when FR,A = ∅,

BR,A = ∅. In this trivial case, FR,A = BR,A. In fact, BR,A =
FR,A may also hold for other cases. Here, we provide an
example where FR,A = BR,A 	= ∅.

Example 2: Consider the two-node network [3] in Fig. 2. R
is a positive real number and z is a positive integer. There are
nF > 2z edges from vs to vt (collectively denoted as EF), and
nB ≥ 0 edges from vt to vs (collectively denoted as EB). Then

FR,P(EF
⋃

EB,z) = BR,P(EF
⋃

EB,z)

Proof: Here we only consider cut E = EF ⋃
EB and

prove

BR,P(EF
⋃

EB,z) ⊆ FR,P(EF
⋃

EB,z).

For any f∗EF
⋃

EB ∈ BR,P(EF
⋃

EB,z),∥∥∥f∗EF\Ea

∥∥∥
1

≥ R, Ea ∈ P
(
EF, nz

)
where nz is defined in equation (4). Now we prove

f∗EF
⋃

EB ∈ FR,P(EF
⋃

EB,z). (5)

Fig. 3. An example where the cut-set outer bound is not tight.

Consider the flow

f∗∗
EF

⋃
EB = f∗EF

⋃
EB + ε1EF

⋃
EB ,

where ε is an arbitrary positive real number. We can verify that
for any Ea ∈ P

(
EF, nz

)
,∥∥∥f∗∗

EF\Ea

∥∥∥
1

> R.

According to [3, Theorem 2], a
(
2NR, N

)
network error cor-

rection code can be constructed on flow f∗∗
EF

⋃
EB . That is, flow

f∗EF
⋃

EB + ε1EF
⋃

EB is a feasible flow. Let ε → 0, which leads
to (5). The proof is completed. �

This example shows that the cut-set outer bound in Theorem 2
is the tightest one among all bounds without considering the
topology outside the cut Ec.

Unfortunately, although Theorem 2 provides the tightest cut-
based outer bound, this bound is not tight in general. In order to
show this, we provide an example where the cut-set outer bound
is not tight.

Example 3: In Fig. 3, we want to support the rate R > 0
and combat the adversary A = P(E, 1). Consider the flow
fE = (fe : e ∈ E):

fe =
{

1
2 R, e ∈ {e1, e2, · · · , e6}
ε, e ∈ {e7, e8, e9} (6)

where ε is a very small positive real such that ε
 1
4 R. It can

be verified that fE ∈ BR,A.
For intermediate node vi2, the only incoming flow is ε on

edge e7. The signals in e7 completely determine the signals
in e6, so the flow on edge e6 carries at most ε information.
Considering this in cut {e1, e2, e4, e6, e9}, the supported rate
could not be greater than 1

2 R + 2ε. Consider that ε
 1
4 R, rate

R is impossible to achieve. That is,

fE /∈ FR,A.

Therefore, the cut-set outer bound is not tight in this example.

C. Generalize to Multicast

Theorem 2 can easily extended into the multicast scenario:
When there are multiple sink nodes (collectively denoted as a
set D such that D ⊆ V\{vs}), we can obtain a outer bound on

2610 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

the feasible region by applying the aforementioned unicast cut-
set bound on each sink node, i.e.,

B(vt)
R,A =

⋂
Vs⊆V :vs∈Vs,vt /∈Vs

BR,A (Ec(Vs)) , vt ∈ D.

Obviously, the feasible region is outer bounded by

FR,A ⊆
⋂
vt∈D

B(vt)
R,A.

V. FIND THE MINIMUM COST NETWORK ERROR

CORRECTION FLOW: A CUT-BASED APPROACH

This section presents an approach to obtain minimum cost
network error correction flows in some cases. Firstly, we use the
cut-set outer bound in the previous section to relax the original
flow allocation problem. Using the relaxed problem, we can
find a lower bound on the minimum cost, and an optimal so-
lution of the optimization. Next, we check whether the optimal
solution of the relaxed problem is a feasible flow. If we can
construct a network error correction scheme on that flow, the
flow is the minimum cost network error correction flow.

A. Cut-Based Lower Bound on Minimum Cost

Using the cut-set outer bound in Theorem 2, the original op-
timization problem 2 can be relaxed to the following problem:

minimize Cost(fE)

over fE
s.t. fE ∈ BR,A. (7)

Obviously, the optimal value of the slacked problem (7) is a
lower bound on the minimum cost.

Note that, for each cut Ec, both B(1)
R,A

(
EF

c

)
and B(2)

R,A
(
EF

c , EB
c

)
are intersections of half spaces, which implies that BR,A(Ec) is
actually an unbounded polyhedron. In this sense, with linear
cost function, the slacked problem (7) is actually a linear
programming. Through this method, we successfully find a
computable lower bound on the minimum cost.

Additionally, since Example 2 shows that the cut-set bound
in Theorem 2 is the tightest outer bound among all outer bounds
without considering the topology outside the cut Ec, the relaxed
problem (7) provides the tightest cut-based lower bound.

B. Examples of Finding Minimum Cost Network Error
Correction Flow

The cut-based lower bound can help us to find the minimum
cost of network error correction flow in many cases, even
when the cut-set outer bound is not exactly the feasible region.
Hereby, we present two instances to show how to find the
minimum cost network error correction flow using the cut-
based lower bound.

Example 4: For the two networks in Fig. 4 (a) and (b), ψE =
1E , A = P(E, 1). The message rate R > 0 is given, too. For
either graph, its edges can be classified into three layers: The
upper layer of edges Eu = Out(vs) contains the edges that are
connected with vs; the bottom layer of edges Eb = In(vt) con-

Fig. 4. Two graphs with identical unit price. (a) A direct graph with 3 + 6 +
4 = 13 edges. (b) A direct graph with 6 + 16 + 4 = 26 edges.

tains the edges that are connected with vt; and the intermediate
layer of edges Em = E\Eu\Eb. The set Vu consists of the nodes
connected with Eu, i.e. Vu = ⋃

e∈Eu
Tail(e). The set Vb consists

of the nodes connected with Eb, i.e. Vb = ⋃
e∈Eb

Head(e). Now
we try to find the minimum cost network error correction flow
in these two instances.

(a) Firstly, we show that the cost of any feasible flow is not
less than 8R. Since any z = 1 edge can be malicious and no
backwards edges exist in this cut, equation (4) reduces to nz =2.
For any feasible flow fE , apply the cut-set bound (3) to Eu, and
we will get

feuj ≥ R, j = 1, 2, 3,

resulting in

‖fEu‖1 ≥ 3R.

Apply the cut-set bound to

Ecj =
{
e : Tail(e) ∈ {vs, vuj}, Head(e) /∈ {vs, vuj}

}
j=1, 2, 3,

and we will get

‖fOut(vuj)‖ ≥ R, j = 1, 2, 3,

which results in

‖fEi‖1 ≥ 3R.

Apply the cut-set bound to Eb and we will get

‖fEb‖1 ≥ 2R.

The cost of any feasible flow is lower bounded by

Cost(fE) = ‖fEu‖1 + ‖fEm‖1 + ‖fEb‖1 ≥ 3R + 3R + 2R = 8R.

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2611

Note that [3, Lemma 7] found a code on the flow(
fopt
Eu

, fopt
Em

, fopt
Eb

)
=

(
R1Eu ,

1

2
R1Em ,

1

2
R1Eb

)
,

whose cost is exactly 8R, and this code can combat any one
erroneous link and support rate R. Therefore, the flow is a
feasible flow, and consequently, the minimum cost flow.

(b) Similar to the proof in (a), we firstly show that the cost of
any feasible flow is not less than 11

2 R.
Now we apply the cut-set bound to Eu. Since any z = 1 edge

can be malicious and no backwards edges exist in this cut,
equation (4) reduces to nz = 2. Due to equation (3), we can
obtain the following inequalities

feu1 + feu2 + feu3 + feu4 ≥ R,

feu1 + feu2 + feu5 + feu6 ≥ R,

feu3 + feu4 + feu5 + feu6 ≥ R.

Add the three inequalities together, and it will result in

‖fEu‖1 ≥ 3

2
R.

Apply the cut-set bound to

Ec1 = {e : Tail(e) /∈ {vb1, vb2, vt}, Head(e) ∈ {vb1, vb2, vt}} ,

then ∥∥∥fIn(vb1)

∥∥∥
1
+

∥∥∥fIn(vb2)

∥∥∥
1

≥ R.

Similarly, we can prove∥∥fIn(vb3)

∥∥
1 + ∥∥fIn(vb4)

∥∥
1 ≥ R.

Thus,∥∥fEm

∥∥
1 = ∥∥fIn(vb1)

∥∥
1 + ∥∥fIn(vb2)

∥∥
1 + ∥∥fIn(vb3)

∥∥
1 + ∥∥fIn(vb4)

∥∥
1

≥ 2R.

Consider the cut Eb,

fb1 + fb2 ≥ R,

fb3 + fb4 ≥ R,

then

‖fEb‖1 ≥ 2R.

Thus, the expense of a feasible flow is lower bounded by

Cost(fE) = ‖fEu‖1 + ‖fEm‖1 + ‖fEb‖1

≥ 3

2
R + 2R + 2R

= 11

2
R.

Next, we show that the flow(
fopt
Eu

, fopt
Em

, fopt
Eb

)
=

(
1

4
R1Eu ,

1

8
R1Em ,

1

2
R1Eb

)
,

whose cost is exactly 11
2 R, is a feasible flow. Here we use

letters (such as a, b, . . .) to represent R/8-flow. The R/8-
flows on the same edge are separated by commas, and the
R/8-flows on different edges are separated by semicolons. Let
the edges Eu transmit a (12, 8) maximum-distance-separable
(MDS) code [24] akin to (a,b; c,d; e,f; g,h; i,j; k,l). The edges
Out(vu1), Out(vu2), · · · , Out(vu6) transmit streams (a; b),
(c; d), (e; f; e + f; e + 2f), (g; h; g + h; g + 2h), (i; j), (k; l)
respectively, where additions are executed in the finite field Fq

(q is a large positive integer). The nodes in Vb forward all their
received streams to vt, in the form of (a, c, e, g; b, d, f, g; e +
f, g + h, i, k; e + 2f, g + 2h, k, l). Node vt decodes in two
steps: First, it decodes the streams related to e, f, g and h by
the method to decode a (4, 2) MDS code. Second, vt decodes
output in first step (a,b,c,d,e,f,g,h) by the method to decode a
(12, 8) MDS code. Now we show that the code can correct
arbitrary one error. If one of edges in Eu is tampered with, the
number of incorrect streams after the first decode step are not
greater than two and can be corrected in the second decode
step. If one of edges in Ei errors, the number of error stream
received by vt is at most one and can be corrected by either
decode steps. If one of the edges in Eb is tampered with, the
streams related to e, f, g and h can be corrected by the (4, 2)
MDS code in the first decode step, while the remaining two
streams can be corrected by the (12, 8) MDS code. Thus,(

fopt
Eu

, fopt
Em

, fopt
Eb

)
=

(
1
4 R1Eu ,

1
8 R1Em , 1

2 R1Eb

)
is a feasible flow,

and consequently, the minimum cost flow.
Comparison Between Fig. 4 (a) and (b): The minimum cost

in Fig. 4 (a) and (b) are 8R and 11
2 R, respectively. Because the

network in Fig. 4(b) has better connectivity than the network
in Fig. 4(a), the minimum cost in Fig. 4(b) is lower than that
in Fig. 4(a). This result implies that the network with better
connectivity may obtain lower minimum cost.

C. Relationship Between Tightness of Cut-Set Bound on
Feasible Region and Cut-Based Bound on Minimum Cost

Obviously, the tightness of the cut-set outer bound on the
feasible region has direct impact on the tightness of the cut-
based lower bound on the minimum cost in (7) (with respect to
the original optimization problem (1)).

Proposition 2: The relaxed problem (7) is tight for all cost
functions if and only if

FR,A = BR,A.

Proof: (1) If the relaxed problem (7) is tight for all
cost functions, the relaxed problem is tight for all linear cost
functions. This in fact tells us FR,A and BR,A share identical
supporting hyperplanes. Recalling that Proposition 1 tells us
FR,A is unbounded and convex, it is obvious that FR,A = BR,A.

(2) If FR,A = BR,A, the relaxed problem (7) is equivalent to
the original problem (1). Therefore, the relaxed problem is tight
whatever the cost function is. �

2612 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Fig. 5. Example 5. All vertices and edges are the same as Fig. 3. (a) Shows the unit price of each edge. (b) Shows the solution of the relaxed problem (7), which
is infeasible. (c) Shows the solution of the problem (8), which is a minimum cost network error correction flow.

VI. MORE THAN CUT-SET BOUND

The cut-based approach in the previous section does not
always find the minimum cost network error correction flow
since the cut-set outer bound is not tight in general and the
tightness of cut-set outer bound directly relates to the tightness
of the cut-based relaxed problem (7). Considering this point,
this section tries to improve the lower bound by adding more
constraints on the relaxed problem.

A. Property of Minimum Cost Network Error
Correction Flow

This subsection considers the topology around a vertex, and
try to find a property of minimum cost network correction flow.

For a vertex v ∈ V\{vs}, the input signals of this vertex
completely determine the outputs of this vertex, i.e., In(v) in-
formationally dominates Out(v) (The concept of informational
dominance was formally proposed in [25]). In this sense, an
edge e ∈ E\Out(vs) need not have more than Tail(e)’s incoming
flows. This observation can be formally stated as the following
proposition:

Proposition 3: Given G = (V, E), ψE , A, and R, fopt
E =(

f opt
e : e ∈ E

)
is a minimum cost network error correction flow.

For any e ∈ E\Out(vs) such that ψe > 0,

f opt
e ≤

∥∥∥fopt
In(Tail(e))

∥∥∥
1
.

This result reveals the relationship between incoming edge
flows and outgoing edge flows of a vertex. In contrast, in the
case of classical network flows, which are unable to resist
errors, for a particular vertex (except the source node or the
sink node), the summation of all incoming edge flows always
equals the summation of all outgoing edge flows. This property
is well known as the law of flow conservation. Unfortunately,
the property no longer holds for network error correction flows
in general. In this sense, Proposition 3 can be regarded as an
extended version of the flow conservation.

B. Tighter Bound

According to the aforementioned proposition, a relaxed prob-
lem is defined as follows to provide a tighter lower bound when
we try to find the minimum cost network error correction flow.

This new lower bound is sometimes tighter than the cut-based
lower bound in (7).

minimize Cost(fE)

over fE
s.t. fE ∈ BR,A

fe ≤
∥∥∥fIn(Tail(e))

∥∥∥
1
, e ∈ E\Out(vs). (8)

Example 5: Let us reconsider the network in Example 3. In
this example, the unit price of edge flow in each edge is

ψe =
{

1, e /∈ {e7, e9}
�, e ∈ {e7, e9}

where � is a very large positive real number. In this condition,
the optimal solution of problem (7) is exactly equation (6),
which proved to be infeasible in Example 3. The optimal
solution of problem (8) is

f rel
e =

{
R, e ∈ {e1, e2, e3, e4}
0, e /∈ {e1, e2, e3, e4}.

This flow is a feasible flow, since we can construct a (3,1) MDS
code therein. Therefore, this flow is the minimum cost network
error correction flow (see Fig. 5.)

VII. OPTIMAL ALLOCATION WITHOUT

INTERMEDIATE RECODING IN DAG

In this section, we propose an algorithm to allocate network
error correction flow on directed acyclic graphs (DAG) when
A = P(E, z).

In a directed acyclic graph G, the maximum number of dis-
joint paths (denoted as |P|) is equal to the minimum cardinality
of all cuts in the graph. There are no backward edges. When
intermediate recoding is forbidden (as the case in real life that
routers are unable to operate data), network error correction
flow should be allocated in disjoint paths.

A. Preliminary

In our previous paper [21], we proved that the best way to
allocate flow in disjoint paths is to distribute edge-flow equally
when the problem is feasible.

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2613

Theorem 3 (Theorem 1 of [21]): In a network that consists of
|P| disjoint paths, the Cost function is Cost(fP) = ∑|P|

i=1 ψifi,
where ψ1 ≤ ψ2 ≤ · · · ≤ ψ|P|. nz has been determined by equa-
tion (4). Let

nr = arg max
1≤i≤|P|

max{i − nz, 0}∑i
j=1 ψj

− nz.

When nr > 0, the problem is feasible, and the flow

fopt
P =

{
R

nr
1nr+nz , 0|P|−(nr+nz)

}

is the minimum cost network error correction flow; otherwise,
the problem is infeasible.

At the same time, [21, Lemma 1] provides a criterion to
determine the number of paths to allocate edge-flows.

Lemma 4 (Lemma 2 of [21]): In the context of Theorem 3, let

I = {1 ≤ i ≤ |P| : φi−1 ≤ (i − 1 − nz)ψi}

where

φi =

⎧⎪⎨
⎪⎩

0, i = 0
i∑

j=1
ψj, 1 ≤ i ≤ |P|.

Then

nr + nz =
{

min
i∈I i, I 	= ∅

|P|, I = ∅.

Lemma 4 provides a method to determine the value of nr

efficiently. In [21], we proposed an algorithm (see Fig. 6) to find
the value of nr using a loop. In the i-th iteration of the loop (1 ≤
i ≤ |P|), we compare the costs between allocating the flow in i
paths and in (i − 1) paths by evaluating φi−1 ≤ (i − 1 − nz)ψi,
and update the value of φi by assigning φi ← φi−1 + ψi. Once
we find an i such that φi−1 ≤ (i − 1 − nz)ψi, let nr ← i. If for
all i, φi−1 > (i − 1 − nz)ψi, then nr + nz = |P|.

B. Algorithm

In this subsection, we propose an algorithm to find disjoint
minimum cost network error correction flow in DAG when A =
P(E, z). (see Algorithm 1).

Algorithm 1 Allocate the minimum cost flow without inter-
mediate recoding

Input: ψE = (ψe, e ∈ E), nz, R.
Output: ffwd

E = (f fwd
e : e ∈ E), cfwd.

1: Initialize: Calculate nz using equation (4). nr ← (−nz).
φ ← 0.
2: loop
3: Try to find one of the shortest paths from vs to vt

(using the shortest path algorithm which can trickle
negative edges).

Fig. 6. Flow chart of finding min-cost network error correction flow on
disjoint paths.

4: if no path can be found then
5: Break the loop;
6: else
7: ψ ← the summation of all unit prices of edges on the

path just found.
8: end if
9: if φ ≤ nrψ then
10: Break the loop;
11: else
12: φ ← φ + ψ , nr ← nr + 1.
13: Inverse the edges on the path just found with negative

unit prices. (Note that if there are multiple identical
edges between two vertices, only one edge needs to
be revised.)

14: end if
15: end loop
16: if nr > 0 then
17: ffwd

E : Allocate R
nr

on all the nz + nr inverse paths from
vt to vs.
Other edges will not be used.

18: cfwd: cfwd ← R
nr

ψ .
19: Construct an (nz + nr, nr) MDS code for the flow.
20: else
21: The problem is infeasible.
22: end if

This algorithm is a combination of the algorithms in [21]
and [9]. The algorithm in [9] can find the (nz + nr) min-cost

2614 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Fig. 7. A directed graph and its iterations; (a) the original graph; (b) the graph
after the 1st iteration; (c) the graph after the 2nd iteration; (d) the graph after
the 3rd iteration.

disjoint paths for each nr such that 1 ≤ nz + nr ≤ |P|, while
the algorithm in [21] can decide the number of paths, (i.e.
(nz + nr)) to allocate the network error correction flow. Specif-
ically, Algorithm 1 contains a loop structure as in Fig. 6. Upon
initializing (Line 1), the algorithm enters into a loop (Line
2–15). In the beginning of the i-th iteration (1 ≤ i ≤ |P|),
we have found (i − 1) min-cost disjoint paths, and φ is the
summation of all unit prices in these (i − 1) paths. At the same
time, nr = i − 1 − nz.

First, the iteration tries to find a shortest path from vs to vt

(Note that there may be multiple shortest paths, but we only
need to find one of them.) If there are no paths from vs to
vt, then i > |P|, which breaks the loop (Line 5). In this case,
since nr = i − 1 − nz and i = |P| + 1, we have nr = |P| − nz.
Otherwise (i ≤ |P|), we set ψ as the summation of the unit
prices of the edges on the path that we have just found (Line 7).
Now, ψ is the difference between the summation of all unit
prices in i min-cost disjoint paths and that in (i − 1) min-cost
disjoint paths.

Afterward, the iteration compares φ and nrψ . If φ ≤ nrψ ,
we only need to allocate the flow on (i − 1) disjoint paths.
Therefore, it breaks the loop (Line 10). Otherwise, it is more
sensible to allocate the flow on i disjoint paths. Then we update
φ to be the summation of unit prices in i disjoint paths, and set
nr as i − nz (Line 12).

In order to let the next iteration (i.e., the (i + 1)-th iteration)
find the (i + 1) disjoint shortest paths easily, this iteration
reverses all edges on the path it has just found. According to
[9], using this method, the next iteration can find the (i + 1)

disjoint shortest paths simply by searching for a shortest path in
the modified graph.

After the loop ceases, the algorithm needs to assert whether
the problem is feasible. If nr > 0 (Line 16), which is equivalent
to |P| > 2z in DAG, then the problem is feasible. In this case,
we allocate the flow on the (nr + nz) disjoint paths we have just
found, and construct an MDS code therein (Line 17–19).

Example 6: Consider the network in Fig. 7(a), which is
modified from [9]. The unit price of each edge is marked

alongside. Let A = P(E, 1) (that is, nz = 2). The algorithm
runs as follows:

(0) Initialize: φ ← 0. nr ← (−nz) = −2.

(1) Find the shortest path from vs to vt in Fig. 7(a): vs
1−→

v1
1−→ v2

1−→ v3
1−→ vt. The summation of unit prices on

this path is 1 + 1 + 1 + 1 = 4. Set ψ ← 4. Considering
that φ = 0 and nr = −2 currently, φ > nrψ . Set nr ←
nr + 1 = −1, φ ← φ + ψ = 4. Inverse the edges on the
path just found, resulting in Fig. 7(b).

(2) Find the shortest path in Fig. 7(b): vs
1−→ v5

1−→ v1
1−→

v6
1−→ v3

−1−→ v2
1−→ v4

2−→ vt. The summation of unit
prices on this path is 1 + 1 + 1 + 1 + (−1) + 1 + 2 =
6. Set ψ ← 6. Considering that φ = 4 and ψ = 6 cur-
rently, φ > nrψ . Set nr ← nr + 1 = 0, φ ← φ + ψ =
4 + 6 = 10. Inverse the edges on the path just found,
resulting in Fig. 7(c). Note that a negative edge between
v2 and v3, which was reversed in precede iteration, is
reversed back to a positive edge.

(3) Find the shortest path in Fig. 7(c): vs
7−→ v4

−1−→ v2
1−→

v3
−1−→ v6

4−→ vt. The summation of unit prices on this
path is 7 + (−1) + 1 + (−1) + 4 = 10. Set ψ ← 10.
Considering φ = 11 and ψ = 10, φ > nrψ . Set nr ←
nr + 1 = 1, φ ← φ + ψ = 10 + 10 = 20. Inverse the
used edges, resulting in Fig. 7(d).

(4) No more paths can be found in Fig. 7(d). The loop ends
with nr = 1. The minimum cost three disjoint paths are

vs
7−→ v4

2−→ vt, vs
1−→ v1

1−→ v6
1−→ v3

1−→ vt, and vs
1−→

v5
1−→ v1

1−→ v6
4−→ vt. Allocate R/nr = R on these paths

and employ (3, 1) MDS code.

C. Complexity

Here we analyze the time complexity of this algorithm. The
number of iterations in the loop is not greater than |P|, which
is less than |V|. The worse time complexity of the shortest
path algorithms that can be applied to negative edges, such as
Bellman-Ford algorithm [26], [27] and its improved versions
[28], is O(|V||E |). Therefore, the overall time complexity of the
algorithm is O

(|V|2|E |).

D. Optimality

The algorithm can attain the minimum cost among all the
route-based flows. For the i-th (1 ≤ i ≤ |P|) iteration, the
algorithm of finding disjoint paths can find the minimal cost
allocation on exactly i disjoint paths. The updating value of
ψ is actually the increase of summation of the unit prices
of the i disjoint paths compared to the summation in the last
preceding iteration. Due to the properties of multiple disjoint
paths, the increase in the latest iteration is always greater
than or equal to all the increase value in preceding iterations
(a.k.a. preceding ψs). After the edges on the path just found
are reversed, the backward paths in the remaining graph will
indicate the minimum cost routing among all possible flows on
exactly i disjoint paths. According to Theorem 3 and Lemma 4,
combining the algorithm to find multiple shortest paths and the

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2615

Fig. 8. The topology of the case-study networks.

algorithm to determine the number of paths to use, Algorithm 1
can find the optimal solution among the minimal cost i disjoint
paths for 1 ≤ i ≤ |P|.

VIII. BENEFIT OF INTERMEDIATE RECODING IN DAG

In some cases, the minimum cost network error correction
flows do not require recoding at intermediate nodes. In other
cases, however, the recoding at intermediate nodes does help.
Take the cases in Example 4 for example. Using the algorithm
in Section VII-B, we can find that the minimum cost of flows
without recoding at intermediate nodes in Example 4(a) and (b)
is 6R and 9R respectively, both of which are greater than the
cost of optimal network error correction flows (11

2 R and 8R).
Actually, the optimal flows in both examples are not classical
network flows, which indicates the necessity of recoding at
intermediate nodes.

This section evaluates the benefit brought by recoding at
intermediate nodes.

A. Unboundedness of the Benefit

Here is an example to show that the benefit of intermediate
recoding can be arbitrarily large compared to non-recoding
schemes.

Example 7: Consider a case-study family of flow allocation
problems (indexed by N). For the i-th problem (i ∈ N), the set
of possible attack sets is A = P(E, i) and the message rate
is R > 0. The network is shown in Fig. 8: there are (i + 1)2

vertices (denoted as Vu) that are connected with vs, and the
unit price of these connections (denoted as Eu) is ψu = 1.
Simultaneously, there are (2i + 1) vertices (denoted as Vb) that
connected with vt, and the unit price of these connections
(denoted as Eb) is ψb = 1/(2i + 1). For any vu ∈ Vu and vb ∈
Vb, there is a connection (the set is denoted as Em) with unit
price ψm = 1/

[
(i + 1)2(2i + 1)

]
.

Now we compare the cost of optimal flow on disjoint path cfwd
i

and the cost of a feasible flow with intermediate coding ccod
i .

Without Intermediate Recoding: In this DAG,

|P| = min {|Vu|, |Vb|} = 2i + 1.

According to Theorem 3, since nz = 2i and nr = 1, the best way
to allocation disjoint flow is allocating flow equality on (2i + 1)

disjoint paths, and the flow on each path is R. For this flow, the
cost is

cfwd
i = (2i + 1)(ψu + ψm + ψb)R

= (2i + 1)

(
1 + 1

(i + 1)2(2i + 1)
+ 1

2i + 1

)
R

=
(

2i + 2 + 1

(i + 1)2

)
R.

With Intermediate Recoding: Consider the following net-
work error correction with recoding at the nodes in bottom
layer: vs transmits the message using an

(
(i + 1)2, i2 + 1

)
MDS

code, and nodes in Vu forward all their received streams to the
nodes in Vb. The three vertices in Vb decode all their received
data, cooperate to provide a (2i + 1, 1) MDS code, and transmit
the 2i + 1 streams to vt. It is easy to show that any i errors in
Eu or Em can be corrected by the vertices in Vb, while vt can
correct any i errors in Eb. Thus, this flow is a feasible flow. Its
cost is

ccod
i = ψu

(i + 1)2

i2 + 1
R + ψm

(i + 1)2(2i + 1)

i2 + 1
R + ψb(2i + 1)R

=
(

(i + 1)2

i2 + 1
+ 1

i2 + 1
+ 1

)
R

=
(

2 + 2i + 1

i2 + 1

)
R.

Comparison: The ratio of the minimum cost of network error
correction with recoding at intermediate nodes to that without
recoding is upper bounded by

γi ≤ ccod
i

cfwd
i

=
(

2 + 2i+1
i2+1

)
R(

2i + 2 + 1
(i+1)2

)
R

= 2 + 2i+1
i2+1

2i + 2 + 1
(i+1)2

.

Note that when i → +∞, the right hand side of the inequality
goes to zero, which results in

γi → 0 (i → +∞).

Thus, the benefit of recoding at intermediate nodes can be
tremendous.

B. Benefits in Random Graph

The previous subsection shows that recoding at intermedi-
ate nodes may bring great benefit in some strong structured
instances. Numerical analysis, however, shows that the benefit
is quite limited in small random graphs.

Fig. 9 simulates the possible benefit in random graphs where
A = P(E, 1). In Fig. 9(a), the x-axis represents the probability
of the existing of edge between two vertices, while the y-axis
represents the average of the ratio of a lower bound of minimum
cost with recoding at intermediate nodes to the minimum cost
without recoding. Different lines show the results with distinct
vertex numbers. In Fig. 9(b), the x-axis is the same as that in
Fig. 9(a), while the y-axis represents the empirical probability

2616 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Fig. 9. Benefit of recoding at intermediate nodes in random graphs. (a) Aver-
age ratio of the lower bound with intermediate recoding to the minimum cost
without recoding. (b) Fraction of cost without intermediate recoding attaining
the lower bound.

of the minimum cost without recoding attaining the lower
bound with recoding at intermediate nodes. The details of the
simulation, including how to generate the networks, how to
calculate the lower bound for the ratio, and so on, are provided
in Appendix E. The simulation results show that the benefit in
random graphs with few vertices is quite limited.

The numerical results show that the benefit in random graphs
with few vertices is quite limited. Additionally, codes with-
out intermediate recoding seem to perform better in smaller
networks. This phenomenon implies an increasing need of
intermediate recoding when the size of network grows.

IX. CONCLUSION

This paper considered the allocation of network error cor-
rection flow to combat Byzantine attacks. We have formulated
the flow allocation problem, and found some approaches to
allocate the flow in an economical way. Further, we have also
investigated the necessity of recoding at intermediate nodes.
Unfortunately, we have not come up with a universal solution
to find the optimal network error correction flow in general
networks and general cost functions. Finding the minimum cost
network error correction flow in general is an interesting and
nontrivial open problem.

APPENDIX A
TRADEOFF

There were a lot of researches on network error correction
flow to combat Byzantine attacks. Previous results showed that
a tradeoff occurs when the flow resource is given. The following
theorem summarizes the tradeoff.

Theorem 4 (Tradeoff): Given the network G = (V, E).

(1) For flows f(1)
E , f(2)

E ≥ 0E such that f(1)
E ≤ f(2)

E and sets
A(1),A(2) ∈ 2E such that A(1) ⊇ A(2),

sup
{

R : f(1)
E ∈ FR(1),A(1)

}
≤ sup

{
R : f(2)

E ∈ FR(2),A(2)

}
;

(2) For flows f(1)
E , f(2)

E ≥ 0E such that f(1)
E ≤ f(2)

E and rates
R(1), R(2) ≥ 0 such that R(1) ≥ R(2),{

A : f(1)
E ∈ FR(1),A

}
⊆

{
A : f(2)

E ∈ FR(2),A
}

;

(3) For sets A(1),A(2) � P(E) such that A(1) ⊆ A(2) and
rates R(1), R(2) ≥ 0 such that R(1) ≤ R(2),

FR(1),A(1) ⊆ FR(2),A(2) .

Previous works mainly focus on the optimization of the first
two sets. Since set {R : fE ∈ FR,A} is a continuous interval start-
ing from zero, numerous researches on finding the supremum
of supported rate (such as [3]) actually optimized on the this
set. Researches on the error correction ability of network error
correction code actually optimized on the set {A : fE ∈ FR,A}.
The minimum cost network error correction flow problem in
this paper actually optimizes on the set FR,A and tries to
minimize the flow on every edge, which can be regarded as a
multi-objective optimization. Therefore, we define a function
Cost as the criterion to combine the objective functions into a
single goal.

APPENDIX B
PROOF OF PROPOSITION 1

Homogeneity and unboundedness are obvious so we only
prove that the set FR,A is convex.

For any f(1)
E , f(1)

E ∈ FR,A, both f(1)
E and f(2)

E can support rate R
and combat adversary A. Due to 1), for any λ(1), λ(2) ∈ [0, 1]
such that λ(1) + λ(2) = 1, flows λ(1)f(1)

E and λ(2)f(2)
E can support

rate λ(1)R and λ(2)R respectively. Consider a network error
correction code that concatenates the two codes on flow λ(1)f(1)

E
and λ(2)f(2)

E , and it will support rate R and combat adversary A.
Thus,

λ(1)f(1)
E + λ(2)f(2)

E ∈ FR,A.

That proves the convexity of the set FR,A.

APPENDIX C
PROOF OF LEMMA 3

Proof of Lemma 3: Now we try to construct a spanning
tree over graph G such that

1) the root of the tree is vs; and
2) none of the edges in the tree belong to Ea.

The method to construct this tree is as follows:
(Step 1) On the one hand, let V(1)

s = {vs}. Obviously,∣∣∣V(1)
s

∣∣∣ = 1. On the other hand, since EF
c

(
V(1)

s

)
	⊆ Ea, there

exists an edge e(1) ∈ EF
c

(
V(1)

s

)
such that e(1) /∈ Ea. Let E (1) ={

e(1)
}
. Obviously, E (1)

⋂
Ea = ∅.

(Step 2) On the one hand, let V(2)
s = V(1)

s
⋃ {

Head(e(1))
}
.

Since e(1) ∈ EF
c

(
V(1)

s

)
, Head

(
e(1)

)
/∈ V(1)

s , so
∣∣∣V(2)

s

∣∣∣ = 2. On

the other hand, since EF
c

(
V(2)

s

)
	⊆ Ea, there exists an edge

e(2) ∈ EF
c

(
V(2)

s

)
such that e(2) /∈ Ea. Let E (2) = E (1)

⋃ {
e(2)

}
.

Since E (1)
⋂

Ea = ∅ and e(2) /∈ Ea, E (2)
⋂

Ea = ∅.
. . .

XIAO et al.: ALLOCATION OF NETWORK ERROR CORRECTION FLOW TO COMBAT BYZANTINE ATTACKS 2617

(Step i, 1 < i < |V|) On the one hand, let

V(i)
s = V(i−1)

s
⋃ {

Head
(
e(i−1)

)}
. Since e(i−1) ∈ EF

c

(
V(i−1)

s

)
,

Head
(
e(i−1)

)
/∈ V(i−1)

s , so
∣∣∣V(i)

s

∣∣∣ = i. On the other hand, since

EF
c

(
V(i)

s

)
	⊆ Ea, there exists an edge e(i) ∈ EF

c

(
V(i)

s

)
such that

e(i) /∈ Ea. Let E (i)
s = E (i−1)

s
⋃ {

e(i)
}
. Since E (i−1)

⋂
Ea = ∅

and e(i) /∈ Ea, E (i) ⋂
Ea = ∅.

. . .

(Step |V|) Let V(|V|)
s = V(|V|−1)

s
⋃ {

Head
(
e(|V|−1)

)}
. Since

e(|V|−1) ∈ EF
c

(
V(|V|−1)

s

)
, Head

(
e(|V|−1)

)
/∈ V(|V|−1)

s . There-

fore,
∣∣∣V(|V|)

s

∣∣∣ = |V|, which leads to V(|V|)
s = V .

Using these |V| steps, we have constructed a spanning tree
T = (

V, E (|V|−1)
)

of G such that E (|V|−1)
⋂

Ea = ∅. Since
there exists a path (without loop) between arbitrary two vertices
in a tree, there exists a path p from vs to vt. Moreover, since
E (|V|−1)

⋂
Ea = ∅ and Ep ⊆ E (|V|−1), we have Ep

⋂
Ea = ∅.

Therefore, p /∈ PEa . �

APPENDIX D
PROOF OF THEOREM 2

Theorem 2, an extension of [3, Theorem 2], is a direct result
of Lemma 1, Lemma 5, and Lemma 6.

Lemma 5: Let R > 0 and A ⊆ 2E . Let Ec be a cut in the
graph where the forward edge set is EF

c and the backward edge
set is EB

c . ∀ Ea ∈ A,

FR,A ⊆
{

fE ≥ 0E : ‖fEF
c \Ea

‖
1

≥ R
}

;

Proof: Suppose set Ea is attacked and both transmitter
and receiver have known this fact by some methods. In this

condition, for any flow fE , at most
∥∥∥fEF

c \Ea

∥∥∥
1

rate can be

transmitted correctly. Thus, for any flow fE that needs to support

rate R, it should satisfy that
∥∥∥fEF

c \Ea

∥∥∥
1

≥ R. �
Lemma 6: Let R > 0 and A ⊆ 2E . Let Ec be a cut in the

graph where the forward edge set is EF
c and the backward edge

set is EB
c . For any E (1)

a , E (2)
a ∈ A such that EB

c ⊆ E (1)
a and EB

c ⊆
E (2)

a ,

FR,A ⊆
{

fE ≥ 0E :
∥∥∥∥fEF

c \
(
E (1)

a
⋃

E (2)
a

)∥∥∥∥
1

≥ R

}
.

Proof: Fix E (1)
a , E (2)

a ∈ A such that EB
c ⊆ E (1)

a and

EB
c ⊆ E (2)

a . We can prove (by a contradiction) that for any
flow fE that needs to support rate R, it should satisfy that∥∥∥∥fEF

c \
(
E (1)

a
⋃

E (2)
a

)∥∥∥∥
1

≥ R.

Suppose

∥∥∥∥fEF
c \

(
E (1)

a
⋃

E (2)
a

)∥∥∥∥
1

< R. According to the Pigeon-

hole Principle, among all 2NR messages in the message
set that can be sent reliably in N channel uses, there ex-
ist two distinct message symbols m(1) and m(2) such that

the code words on edge set EF
c \

(
E (1)

a
⋃

E (2)
a

)
are identi-

cal. Let x(1)

EF
c

=
(

x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(1)

E (1)
a

, x(1)

E (2)
a \E (1)

a

)
and x(2)

EF
c

=(
x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(2)

E (1)
a

, x(2)

E (2)
a \E (1)

a

)
be the codewords on the cut

EF
c when m(1) and m(2) are being sent along respectively. When

m(1) is transmitted and attacked by E (1)
a , the adversary can

change the codeword from

(
x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(1)

E (1)
a

, x(1)

E (2)
a \E (1)

a

)

to

(
x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(2)

E (1)
a

, x(1)

E (2)
a \E (1)

a

)
. When m(2) is trans-

mitted and attacked by E (2)
a , the adversary can change

the codeword from

(
x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(2)

E (1)
a

, x(2)

E (2)
a \E (1)

a

)
to(

x(1)

EF
c \

(
E (1)

a
⋃

E (2)
a

), x(2)

E (1)
a

, x(1)

E (2)
a \E (1)

a

)
. Therefore, the nodes aside

the sink node can not distinguish these two messages. That
leads to a contraction. �

Proof of Theorem 2: Lemma 5 leads to FR,A⊆B(1)
R,A

(
EF

c

)
,

while Lemma 6 leads toFR,A⊆B(2)
R,A

(
EF

c , EB
c

)
. Taking Lemma 1

into consideration as well, we have FR,A ⊆ BR,A(Ec). �

APPENDIX E
DETAILS OF THE NUMERICAL ANALYSIS

This appendix introduces the details of the numerical analy-
sis in Section VIII-B.3

Having fixed the vertex number |V| > 2 and the probability
of edge existence p ∈ (0, 1], we generate a large number of
instances in the following way [29]: for every instance i to
generate, let {v1, v2, · · · , v|V|} be the vertices in the network.
Let v1 be the source node and v|V| be the sink node. For every
vj1 and vj2 (1 ≤ j1 < j2 ≤ |V|), the edge between vj1 and vj2 oc-
curs independently with probability p and the unit price of each
edge is independently and uniformly selected from [0,1]. Next,
the max-flow algorithm is used to check whether the minimum
cardinality of cuts in the instance is greater than 2z = 2. If so,
instance i is a feasible instance, and a lower bound for network
error correction flow allowing recoding (denoted as crel

i) and
the minimum cost for flows without recoding at intermediate
nodes (denoted as cfwd

i) are calculated by the methods in the
Sections VI-A and VII-B respectively. Let I(|V|, p) be the set
of feasible instances. The average ratio in Fig. 9(a) is defined as

ratio (|V|, p) = 1

|I (|V|, p)|
∑

i∈I(|V|,p)

crel
i

cfwd
i

and the fraction in Fig. 9(b) is

fraction (|V|, p) =
∣∣{i ∈ I (|V|, p) : crel

i = cfwd
i

}∣∣
|I (|V|, p)| .

3All related codes, which are developed in MATLAB, can be found at:
https://drive.google.com/file/d/0By2m48ItFbTeZTRhY1I5aG9hTDg/.

2618 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

ACKNOWLEDGMENT

The authors would like to thank Shenghao Yang, Britt Fugitt,
Jiang Zhu, Xiangming Meng, and two anonymous reviewers for
their helpful comments.

REFERENCES

[1] D. Silva and F. Kschischang, “Adversarial error correction for network
coding: models and metrics,” in Proc. 46th Annu. Allerton Conf. Commun.,
Control, Comput., Sep. 2008, pp. 1246–1253.

[2] S. Kim, T. Ho, M. Effros, and A. Avestimehr, “Network error correc-
tion with unequal link capacities,” in Proc. 47th Annu. Allerton Conf.
Commun., Control, Comput., Sep. 2009, pp. 1387–1394.

[3] S. Kim, T. Ho, M. Effros, and A. Avestimehr, “Network error correction
with unequal link capacities,” IEEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 1144–1164, Feb. 2011.

[4] T. Ho, S. Kim, Y. Yang, M. Effros, and S. Avestimehr, “On network error
correction with limited feedback capacity,” in Proc. Inf. Theory Appl.
Workshop, 2011, pp. 1–3.

[5] Z. Zhang, “Linear network error correction codes in packet networks,”
IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 209–218, Jan. 2008.

[6] O. Kosut, L. Tong, and D. Tse, “Nonlinear network coding is necessary
to combat general Byzantine attacks,” in Proc. 47th Annu. Allerton Conf.
Commun., Control, Comput., Sep. 2009, pp. 593–599.

[7] O. Kosut, L. Tong, and D. Tse, “Polytope codes against adver-
saries in networks,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2010,
pp. 2423–2427.

[8] O. Kosut, L. Tong, and D. Tse, “Polytope codes against adversaries in net-
works,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3308–3344, Jun. 2014.

[9] R. Bhandari, “Optimal physical diversity algorithms and survivable net-
works,” in Proc. IEEE Symp. Comput. Commun., 1997, pp. 433–441.

[10] N. Cai and R. Yeung, “Network coding and error correction,” in Proc.
IEEE Inf. Theory Workshop, Oct. 2002, pp. 119–122.

[11] T. Ho et al., “Byzantine modification detection in multicast networks
using randomized network coding,” in Proc. IEEE Int. Symp. Inf. Theory,
Oct. 2004, p. 144.

[12] T. Ho et al., “Byzantine modification detection in multicast networks
with random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 6,
pp. 2798–2803, Jun. 2008.

[13] R. W. Yeung and N. Cai, “Network error correction, I: Basic concepts and
upper bounds,” Commun. Inf. Syst., vol. 6, no. 1, pp. 19–35, 2006.

[14] S. Yang, R. Yeung, and C.-K. Ngai, “Refined coding bounds and code
constructions for coherent network error correction,” IEEE Trans. Inf.
Theory, vol. 57, no. 3, pp. 1409–1424, Mar. 2011.

[15] R. Matsumoto, “Construction algorithm for network error-correcting
codes attaining the singleton bound,” IEICE Trans. Fundam. Electron.,
Commun. Comput. Sci., vol. 90, no. 9, pp. 1729–1735, Sep. 2007.

[16] X. Guang, F.-W. Fu, and Z. Zhang, “Construction of network error cor-
rection codes in packet networks,” IEEE Trans. Inf. Theory, vol. 59,
no. 2, pp. 1030–1047, Feb. 2013.

[17] Y. Yang, T. Ho, and W. Huang, “Network error correction with limited
feedback capacity,” 2013. [Online]. Available: http://arxiv.org/abs/1312.
3823/

[18] D. Lun et al., “Minimum-cost multicast over coded packet networks,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2608–2623, Jun. 2006.

[19] T. Cui and T. Ho, “Minimum cost integral network coding,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2007, pp. 2736–2740.

[20] J. Tan and M. Medard, “Secure network coding with a cost criterion,”
in Proc. IEEE Int. Symp. Model. Optim. Mobile, Ad Hoc Wireless Netw.,
Apr. 2006, pp. 1–6.

[21] Z. Xiao, Y. Li, and J. Wang, “Allocation of network error correction flow
on disjoint paths,” Tsinghua Sci. Technol., vol. 20, no. 2, pp. 182–187,
Apr. 2015.

[22] Z. Xiao, Y. Li, X. Su, and J. Wang, “Processing delays do not degrade
network error-correction capacity in directed networks,” IEEE Commun.
Lett., to be published. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7093115

[23] W. Huang, M. Langberg, and J. Kliewer, “Connecting multiple-unicast
and network error correction: Reduction and unachievability,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2015, pp. 1–6.

[24] R. Singleton, “Maximum distance q-nary codes,” IEEE Trans. Inf. Theory,
vol. IT-10, no. 2, pp. 116–118, Apr. 1964.

[25] N. Harvey, R. Kleinberg, and A. Lehman, “On the capacity of informa-
tion networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2345–2364,
Jun. 2006.

[26] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 16,
pp. 87–90, 1958.

[27] J. Ford and R. Lester, “Network flow theory,” RAND Corp., Santa
Monica, CA, USA, Aug. 1956, vol. 16, p. 923.

[28] J. Yen, “An algorithm for finding shortest routes from all source nodes
to a given destination in general networks,” Quart. Appl. Math., vol. 27,
pp. 526–530, 1970.

[29] E. N. Gilbert, “Random plane networks,” J. Soc. Ind. Appl. Math., vol. 9,
no. 4, pp. 533–543, 1961.

Zhiqing Xiao received the B.S. degree from Beijing
University of Posts and Telecommunications, China,
in 2011, and he is currently pursuing the Ph.D.
degree in Department of Electronic Engineering,
Tsinghua University. His research interests in-
clude network error correction, network information-
theoretic security, and network information theory.

Yunzhou Li (M’06) received the Ph.D. degree from
Tsinghua University, Beijing, China, in 2004. Cur-
rently, he is a Professorship Researcher at Tsinghua
University. He mainly focuses on signal process-
ing technologies in wireless and mobile commu-
nications, including spatial-time signal processing,
channel estimation, multi-user detection, and syn-
chronization algorithms for CDMA/OFDM system.
He is also interested in analysis, optimization design
and enhancement of cellular system and WLAN.

Ming Zhao (M’98) received the B.S. and Ph.D.
degrees from the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China, in 1993
and 1998, respectively. In 1998, he joined the faculty
of Tsinghua University. He is currently a Professor-
ship Researcher at the School of Information Science
and Technology, Tsinghua University. He is experi-
enced in the R&D of wireless and mobile communi-
cation, and his interests include modulation, channel
coding, channel capacity, resource management, and
network protocol. He has published over 100 confer-

ence and journal papers.

Xibin Xu (M’00) received the B.S. degree from
the University of Electronic Science and Technol-
ogy of China in 1988, and the M.S. degree from
Tsinghua University, Beijing, China, in 1992. He
joined the faculty of Tsinghua University in 1992
and is currently a Professorship Researcher at the
School of Information Science and Technology,
Tsinghua University. His research interests are in the
area of wireless communications, including trans-
mission and networking technologies of 5G. He has
published over 100 conference and journal papers.

Jing Wang (M’99) received the B.S. and M.S.
degrees in electronic engineering from Tsinghua
University, Beijing, China, in 1983 and 1986, re-
spectively. He has been on the faculty at Tsinghua
University since 1986. He is currently a Professor at
the School of Information Science and Technology,
Tsinghua University. He serves as the Vice Director
of the Tsinghua National Lab for Information Sci-
ence and Technology. His research interests are in the
area of wireless communications, including trans-
mission and networking technologies of 5G. He has

published more than 150 conference and journal papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

